Math, asked by llWhiteStormll, 4 months ago


 \frac{4}{x} +  \frac{5}{y} = 7  ; \frac{3}{x} +  \frac{4}{y} = 5



Answers

Answered by Anonymous
9

GIVEN :-

 \\  \bullet \:  \:  \:  \:  \:  \sf \:  \frac{4}{x}  +  \frac{5}{y}  = 7 \\  \\  \bullet \:  \:  \:  \:  \sf \:  \frac{3}{x}  +  \frac{4}{y}  = 5 \\  \\

TO FIND :-

  • x and y.

  \\

SOLUTION :-

 \\

Let us consider ,

 \\  \sf \:  \frac{1}{x} = p \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  \:   \frac{1}{y}   = q \\  \\

So, the equation becomes ,

 \\  \bullet \:  \:  \:  \:  \:  \sf \: 4p +  5q = 7 \:  \:  \:  \:  -  - (1) \\  \\  \bullet \:  \:  \:  \:  \:  \sf \: 3p + 4q = 5  \:  \:  -  - (2)\\  \\

Multiplying equation (1) by 3 ,

Multiplying equation (2) by 4 ,

We get..

 \\  (1) \:  \:  \:  \:  \: \sf \: 3(4 p + 5q) = 3(7) \\  \implies \sf  12p + 15q = 21 \:  \:  \:  \:  \:  -  - (3) \\  \\  (2) \:  \:  \:  \: \:  \:  \sf 4(3p + 4q) = 4(5) \\  \implies \sf  12p + 16q = 20 \:  \:  \:  \:  -  - (4) \\  \\  \\

Subtracting equation (4) by equation (3) ,

→ 12p + 15q - (12p + 16q) = 21 - 20

→ 12p + 15q - 12p - 16q = 1

→ -q = 1

q = -1

Putting q = -1 in equation (1) ,

→ 4p + 5q = 7

→ 4p + 5(-1) = 7

→ 4p - 5 = 7

→ 4p = 7 + 5

→ 4p = 12

p = 3

Hence , q = -1 and p = 3.

 \\  \bullet \sf \: p =  \frac{1}{x}  \\  \\   \implies\sf \:  3 =  \frac{1}{x}  \\  \\   \implies \boxed{\sf \: x =  \frac{1}{3} } \\  \\  \\  \bullet \sf \: q =  \frac{1}{y}  \\  \\  \implies \sf \:  - 1 =  \frac{1}{y}  \\  \\  \implies  \boxed{\sf \: y =  - 1} \\  \\

Hence , x = 1/3 and y = -1.

Answered by Anonymous
86

 \huge \mathtt \pink{to \: solve} \pink \to

\frac{4}{x} + \frac{5}{y} = 7 ; \frac{3}{x} + \frac{4}{y} = 5</p><p></p><p>

 \huge \mathtt \pink{solution} \pink \to

\displaystyle {4} \left(  \frac{1}{x} \right) </p><p></p><p> +  \displaystyle{5} \left(  \frac{1}{y} \right) = 7.  .  .  (i)

\displaystyle{3} \left(  \frac{1}{x} \right) + 4 \displaystyle \left( \frac{1}{y} \right) = 5...(ii)</p><p></p><p>

 \sf{replacing} \displaystyle \left( \frac{1}{x} \right) \sf \: by \: m \: and \:  \displaystyle \left( \frac{1}{y} \right) \sf \:  \\  \sf by \: n \: in \: equation \\  \sf (i)and(ii) \: we \: get \:

 \text{4m + 5n = 7...(iii)}

 \text{3m + 4n = 5...(iv)}

 \mathtt{on \: solving \: these \: equation \: we \: get}

 \text{m = 3, \: n =  - 1}

 \mathtt{now,m =  \frac{1}{x}}

 \therefore \boxed {3 =  \frac{1}{x}}

  \therefore\boxed{x =  \frac{1}{3}}

[/tex]</p><p></p><p></p><p>[tex] \sf{n =  \frac{1}{y}}

 \therefore \boxed{ - 1 =  \frac{1}{y}}

 \therefore \boxed{y =  - 1}

 \therefore \mathtt{solution \: of \: given \: simultaneous \: equation \: is \: } \\  \\  \\  \\   \boxed{(x,y) = ( \frac{1}{3}, - 1)}

Similar questions