Math, asked by akeertana503, 1 month ago


 \frac{7}{x}  +  \frac{8}{y}  = 2 \\ \\  and \\  \\  \frac{2}{x}  +  \frac{13}{y}  = 22
\Large\orange{\textbf {\textsf {no\:spam:}}}




Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

The given pair of equations are

\rm :\longmapsto\:\dfrac{7}{x}  + \dfrac{8}{y}  = 2 -  -  - (1)

and

\rm :\longmapsto\:\dfrac{2}{x}  + \dfrac{13}{y}  = 22 -  -  - (2)

To solve, such pair of equations, let us assume that

\rm :\longmapsto\:\dfrac{1}{x} = u

and

\rm :\longmapsto\:\dfrac{1}{y} = v

So, above equations can be reduced to

\rm :\longmapsto\:7u + 8v = 2 -  -  - (3)

and

\rm :\longmapsto\:2u + 13v = 22 -  -  - (4)

Now, to solve these equations,

Using Cross Multiplication method, we have

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf  8 & \sf  2 & \sf 7 & \sf  8\\ \\ \sf 13 & \sf 22 & \sf 2 & \sf 13\\ \end{array}} \\ \end{gathered}

So, we have

\rm :\longmapsto\:\dfrac{u}{176 - 26}  = \dfrac{v}{4 - 154}  = \dfrac{ - 1}{91 - 16}

\rm :\longmapsto\:\dfrac{u}{150}  = \dfrac{v}{ - 150}  = \dfrac{ - 1}{75}

\rm :\longmapsto\:\dfrac{u}{150}  = \dfrac{v}{ - 150}  = \dfrac{1}{ - 75}

On Multiply by 150, we get

\rm :\longmapsto\:\dfrac{u}{1}  = \dfrac{v}{ - 1}  =  - 2

So,

\bf\implies \:u =  - 2

and

\bf\implies \:v = 2

Hence,

\bf\implies \:x = \dfrac{1}{u} =  -  \dfrac{1}{2}

and

\bf\implies \:y = \dfrac{1}{v} =  \dfrac{1}{2}

Verification :-

Consider equation (1),

\rm :\longmapsto\:\dfrac{7}{x}  + \dfrac{8}{y}  = 2

On substituting the values of x and y, we get

\rm :\longmapsto\:7 \times ( - 2) + 8(2) = 2

\rm :\longmapsto\: - 14 + 16 = 2

\bf\implies \:2 = 2

Hence, Verified.

Consider, equation (2),

\rm :\longmapsto\:\dfrac{2}{x}  + \dfrac{13}{y}  = 22

On substituting the values of x and y, we get

\rm :\longmapsto\:2 \times ( - 2) + 13 \times 2 = 22

\rm :\longmapsto\: - 4 + 26 = 22

\bf\implies \:22 = 22

Hence, Verified

Similar questions