Math, asked by milan5959sathi, 10 months ago


 \frac{a}{(x - a)}  +  \frac{b}{(x - c)}   =  \frac{2c}{(x - c)}

Answers

Answered by rishu6845
11

Answer:

x \:  =  \dfrac{a(b - c)}{(a + 2b  - 2c)}

Step-by-step explanation:

Given--->

 \dfrac{a}{(x - a)} +  \dfrac{b}{(x - c)}  =  \dfrac{2c}{(x - c)}

To find ---->

value \: of \: x

Solution---->

 \dfrac{a}{(x - a)}  +  \dfrac{b}{(x - c)}  =  \dfrac{2c}{(x - c)}

 =  >  \dfrac{a}{(x - a)}  +  \dfrac{b}{(x - c)}  =  \dfrac{c}{(x - c)}  +  \dfrac{c}{(x - c)}

 =  >  \dfrac{a}{(x - a)} -  \dfrac{c}{(x - c)}   =  \dfrac{c}{(x - c)}  -  \dfrac{b}{(x - c)}

 =  >  \dfrac{a(x - c) - c(x - a)}{(x - a) \: (x - c)}  =  \dfrac{(c - b)}{(x - c)}

(x - c) \: cancel \: out \: from \: each \: side \: we \: get

 =  >  \dfrac{ax - ac - cx + ac}{(x - a) }  = (c - b)

 =  >  \dfrac{ax - cx}{(x - a)} = (c - b)

 =  > (a - c)x \:  = (c - b) \: (x - a)

 =  > (a - c)x \:  = (c - b)x - a(c - b)

 =  > (a - c)x - (c - b)x =  - a(c - b)

 =  > (a - c - c + b)x =  - a(c - b)

 =  > (a + b - 2c)x \:  = a(b - c)  \\  =  >  \:  \:  \: x  \:  \:  \:  =  \dfrac{a(b - c)}{(a + b - 2c)}

Answered by Diivyaa
17

\huge{\blue{Answer}}

Given,

a/(x-a) + b/(x-c) = 2c/(x-c)

To find the value of x ,

Solution:-

a/(x-a) + b/(x-c) = 2c/(x-c)

⇒ a/(x-a) + b/(x-c) = c/(x-c) + c/(x-c)

⇒ a/(x-a) - c/(x-c) = c/(x-c) - b/(x-c)

⇒ a(x-c) - c(x-a) / (x-a) (x-c) = (c-b)/(x-c)

(x-c) cancel out from each side , we get,

⇒ ax - ac - cx + ac / (x-a) = (c-b)

⇒ ax - cx / (x-a) = (c-b)

⇒ (a-c)x = (c-b) (x-a)

⇒ (a-c)x = (c-b)x - a(c-b)

⇒ (a-c)x - (c-b)x = -a(c-b)

⇒ (a-c-c+b)x = -a(c-b)

⇒ (a+b-2c)x = a(b-c)

⇒ x = a(b-c) / (a+b-2c)

Similar questions