Math, asked by rishika1088, 6 months ago


 \frac{ \cos \theta}{1 +  \sin \theta}  +  \frac{1 +  \sin \theta}{cos \theta}  = 2sec \theta

Answers

Answered by ILLUSTRIOUS27
0

\Huge question

\large \ \frac{ \cos \theta}{1 +  \sin \theta}  +   \frac{1 +  \sin \theta}{ \cos \theta}  = 2 \sec \theta

\Huge solution

First we simplify LHS

 \large  LHS =  \small  \frac{ \cos \theta}{1 +  \sin \theta}  +  \frac{1 +  \sin \theta}{ \cos \theta}  \\  \implies \  \frac{ { \cos}^{2}  \theta  +  {(1 +  \sin \theta)}^{2} }{(1 +  \sin \theta)( \cos \theta)} \\  \implies   \frac{ { \cos}^{2} \theta + 1 +   { \sin}^{2}  \theta + 2  \sin \theta }{ \cos \theta(1 +  \sin \theta)}  \\  \implies \frac{2 + 2 \sin \theta}{ \cos \theta(1 +  \sin \theta)}  \\   \implies \frac{2(1 +  \sin \theta)}{ \cos \theta(1 +  \sin \theta)}

now you can cut 1+sinQ and then using identity make LHS=RHS

Let's see how

we \: know \:  \frac{1}{ \cos \theta }  =  \sec \theta \\ therefore \\  \frac{2}{ \cos \theta }  = 2 \sec \theta = LHS

 \large RHS = 2 \sec \theta

 \huge  LHS =  RHS

Hence proved

Similar questions