Math, asked by kiran1974gorai, 1 month ago


 \frac{ \sqrt{1 +  \sin( \frac{39\pi}{8} ) } }{ \sqrt{1 +  \sin( \frac{57\pi}{8} ) } }  = \tan( \frac{k\pi}{16} )
Find the value of K. ​

Answers

Answered by senboni123456
5

Step-by-step explanation:

We have,

\frac{ \sqrt{1 + \sin \bigg( \dfrac{39\pi}{8}  \bigg) } }{ \sqrt{1 + \sin \bigg( \dfrac{57\pi}{8}  \bigg) } } = \tan \bigg( \frac{k\pi}{16} \bigg ) \\

  \implies\frac{ \sqrt{1 + \sin \bigg( 5\pi - \dfrac{\pi}{8}  \bigg) } }{ \sqrt{1 + \sin \bigg(7\pi +  \dfrac{\pi}{8}  \bigg) } } = \tan \bigg( \frac{k\pi}{16} \bigg ) \\

  \implies\frac{ \sqrt{1 + \sin \bigg(  \dfrac{\pi}{8}  \bigg) } }{ \sqrt{1  -  \sin \bigg( \dfrac{\pi}{8}  \bigg) } } = \tan \bigg( \frac{k\pi}{16} \bigg ) \\

  \implies \sqrt{\frac{ 1 + \sin \bigg(  \dfrac{\pi}{8}  \bigg)  }{ 1  -  \sin \bigg( \dfrac{\pi}{8}  \bigg)  } }= \tan \bigg( \frac{k\pi}{16} \bigg ) \\

  \implies \sqrt{\frac{ 2 \cos^{2}  \bigg(  \dfrac{\pi}{8}  \bigg)  }{ 2 \sin^{2}  \bigg( \dfrac{\pi}{8}  \bigg)  } }= \tan \bigg( \frac{k\pi}{16} \bigg ) \\

  \implies  \cot  \bigg(  \dfrac{\pi}{8}  \bigg)   = \tan \bigg( \frac{k\pi}{16} \bigg ) \\

  \implies  \tan \bigg(   \frac{\pi}{2} -  \dfrac{\pi}{8}  \bigg)   = \tan \bigg( \frac{k\pi}{16} \bigg ) \\

  \implies  \tan \bigg(    \dfrac{3\pi}{8}  \bigg)   = \tan \bigg( \frac{k\pi}{16} \bigg ) \\

  \implies  \tan \bigg(    \dfrac{6\pi}{16}  \bigg)   = \tan \bigg( \frac{k\pi}{16} \bigg ) \\

 \implies \: k = 6

Similar questions