Answers
Step-by-step explanation:
Given:-
[√(1+x)+√(1-x)]/[√(1+x)-√(1-x)] = p
To find:-
Prove that p^2-(2p/x)+1 = 0
Solution:-
Given that
[√(1+x)+√(1-x)] / [√(1+x)-√(1-x)] = p
The denominator = [√(1+x)-√(1-x)]
Rationalising factor of [√(1+x)-√(1-x)] is
[√(1+x) + √(1-x)]
On Rationalising the denominator then
=> [√(1+x)+√(1-x)] / [√(1+x)-√(1-x)]
× [√(1+x) + √(1-x)] / [√(1+x) + √(1-x)]
=>[√(1+x)+√(1-x)][√(1+x)+√(1-x)] / [√(1+x)-√(1-x)][√(1+x)+√(1-x)]
=> [√(1+x)+√(1-x)]^2/[√(1+x)-√(1-x)]
[√(1+x)+√(1-x)]
=> [√(1+x)+√(1-x)]^2/[{√1+x)}^2+{(1-x)}^2]
Since (a+b)(a-b)=a^2-b^2
=> [√(1+x)+√(1-x)]^2/[(1+x )-(1-x)]
=> [√(1+x)+√(1-x)]^2/(1+x-1+x)
=> [√(1+x)+√(1-x)]^2/2x
We know that (a+b)^2 = a^2+2ab+b^2
=>[ [√(1+x)]^2+2√(1+x)√(1-x)+[√(1-x)]^2]/2x
=> [(1+x)+2√[(1+x)(1-x)]+1-x]/2x
=>[ 2+2√[(1+x)(1-x)]]/2x
=> 2[1+√[(1+x)(1-x)]] /2x
=> [1+√[(1+x)(1-x)]]/x
p = [1+√[(1+x)(1-x)]]/x
On squaring both sides then
=> p^2 = [[1+√[(1+x)(1-x)]]/x]^2
=> p^2 = [1^2+2√[(1+x)(1-x)]+[√[(1+x)(1-x)]]^2] /x^2
=> p^2 =[ 1+(1+x)(1-x)+2√[(1+x)(1-x)]]/x^2
=>p^2 = [2-x^2+2√[(1+x)(1-x)]]/x^2
and
2p/x = 2[1+√[(1+x)(1-x)]]/x×x
=> 2p/x = 2[1+√[(1+x)(1-x)]]/x^2
Now p^2-(2p/x)+1
=> [2-x^2+2√[(1+x)(1-x)]]/x^2-[2[1+√[(1+x)(1-x)]]/x^2]+1
=> [(2-2)/x^2]+(-x^2/x^2) +[2√[(1+x)(1-x)]]/
x^ -2√[(1+x)(1-x)]]/x^2] +1
=> 0+(-1)+0+1
=> -1+1
=>0
p^2-(2p/x)+1 = 0
Hence, Proved
Used formulae:-
- (a+b)^2 = a^2+2ab+b^2
- The product of two irrational numbers is a rational number then each of them are called Rationalising factors.
- The Rationalising factor of√a+√b is √a-√b