Math, asked by roysoumyadip033, 2 months ago


 \frac{ \sqrt{5} }{ \sqrt{3} + 2 } -  \frac{3 \sqrt{3} }{ \sqrt{2}  +  \sqrt{5}  }  +  \frac{2 \sqrt{2} }{ \sqrt{3}  +  \sqrt{5} }  =

Answers

Answered by Salmonpanna2022
6

Answer:

1.

Step-by-step explanation:

Given that:

 \tt \red{\frac{ \sqrt{5} }{ \sqrt{3}  + 2}  -  \frac{3 \sqrt{3} }{ \sqrt{2} +  \sqrt{2}  }  +  \frac{2 \sqrt{2} }{ \sqrt{3 }  +  \sqrt{5} } } \\  \\

What to do:

To solve

Solution:

[Hint: we can solve this problem one by one and last we arrange the three term according to the given question and cancel them.]

First \:  term: \frac{ \sqrt{5} }{ \sqrt{3}  + 2}  \\  \\

 \longrightarrow \:  \frac{ \sqrt{5} ( \sqrt{3}  -  \sqrt{2}) }{( \sqrt{3} +  \sqrt{2} )( \sqrt{3}  -  \sqrt{2}  )}  \\  \\

\longrightarrow \:  \frac{ \sqrt{15}  -  \sqrt{10} }{( \sqrt{3} {)}^{2} - ( \sqrt{2 } {)}^{2}   }  \\  \\

\longrightarrow \:  \frac{ \sqrt{15}  -  \sqrt{10} }{3 - 2}  \\  \\

\longrightarrow \:  \red{ \sqrt{15}  -  \sqrt{10} } \\  \\

Second \:  term: \frac{3 \sqrt{3} }{ \sqrt{2} +  \sqrt{5}  }  \\  \\

\longrightarrow \:  \frac{3 \sqrt{3} ( \sqrt{5}  -  \sqrt{2} )}{( \sqrt{5}  -  \sqrt{2})( \sqrt{5} -  \sqrt{2})   }  \\  \\

\longrightarrow \:  \frac{(3 \sqrt{15}  - 3 \sqrt{6} )}{( \sqrt{2}) ^{2}  - ( \sqrt{5}   {)}^{2} }  \\  \\

\longrightarrow \: \frac{3( \sqrt{15} -  \sqrt{6})  }{2 - 5}  \\  \\

\longrightarrow \:  \frac { \cancel  3( \sqrt{15} -  \sqrt{6} ) } {\cancel3}  \\  \\

\longrightarrow \:  \red{ \sqrt{15}  +  \sqrt{6} } \\  \\

Third \:  term: \:  \frac{2 \sqrt{2} }{ \sqrt{3} +  \sqrt{5}  }  \\  \\

\longrightarrow \:  \frac{2 \sqrt{2} ( \sqrt{5} -  \sqrt{3})  }{( \sqrt{5}  -  \sqrt{3} )( \sqrt{5} +  \sqrt{3}  }  \\  \\

\longrightarrow \:  \frac{2 \sqrt{10}  - 2 \sqrt{16} }{( \sqrt{3}  {)}^{2}  - ( \sqrt{5}  {)}^{2} }  \\  \\

\longrightarrow \:  \frac{2( \sqrt{10}  -  \sqrt{6}) }{3 - 5}  \\  \\

\longrightarrow \:  \frac{ \cancel2( \sqrt{10} -  \sqrt{6} ) }{ \cancel2}  \\  \\

\longrightarrow \: \red  {\sqrt{10}  -  \sqrt{6} } \\  \\

Now

 Hence,\tt \red{\frac{ \sqrt{5} }{ \sqrt{3}  + 2}  -  \frac{3 \sqrt{3} }{ \sqrt{2} +  \sqrt{2}  }  +  \frac{2 \sqrt{2} }{ \sqrt{3 }  +  \sqrt{5} } } \\  \\

\longrightarrow \: \cancel \red{ \cancel{  \sqrt{15}  }-   \cancel{\sqrt {10}}  -   \cancel{\sqrt{15} } +   \cancel{\sqrt{6} } +   \cancel{\sqrt{10}}  -   \cancel{\sqrt{6}}}  \\  \\

\longrightarrow  \red{\: 0 \: Ans.}

Similar questions