Math, asked by kishanjee2009, 17 days ago


 (\frac{tan \: a}{1 - cot \: a} ) + ( \frac{cot \: a}{1 - tan \: a}) = (1 + tan \: a + cot \: a)
please answer my question​

Answers

Answered by Anonymous
36

 \bf LHS = \left(  \dfrac{tan \: a}{1 - cot \: a} \right ) +  \left (\dfrac{cot \: a}{1 - tan \: a} \right)  \\  \\ \bf\left(  \dfrac{tan \: a}{1 -  \frac{1}{tan \: a}} \right ) +  \left (\dfrac{ \frac{1}{tan \: a} }{1 - tan \: a} \right) \\  \\ \bf\left(  \dfrac{tan \: a}{ \dfrac{tan \: a- 1}{tan \: a}} \right ) +  \left (\dfrac{ \frac{1}{tan \: a} }{1 -  tan \: a } \right) \\  \\ \bf\left(  \dfrac{tan^{2}  \: a}{tan \: a- 1} \right ) +  \left (\dfrac{ 1 }{tan \: a(1 - tan \: a)} \right) \\  \\ \bf\left(  \dfrac{tan^{3}  \: a - 1}{tan \: a(tan \: a- 1)} \right ) \\  \\  { \boxed{ \pmb{ \sf{ \red{ {a}^{3}  -  {b}^{3}  = (a - b)( {a}^{2}  + ab + {b}^{2} )}}}}} \\  \\ \bf\left(  \dfrac{(tan \: a - 1)(tan^{2}a + tan \: a +  1  }{tan \: a( tan \: a - 1)} \right) \\  \\ \bf\left(  \dfrac{tan^{2}a + tan \: a +  1  }{tan \: a} \right) \\  \\ \bf \dfrac{tan^{2}a}{tan \: a} +  \dfrac{tan \: a}{tan \: a} +  \dfrac {1  }{tan \: a} \\  \\ \bf tana+ 1+ cot \: a  = RHS\: verified

Quick Review :

  • Convert cot a into tan a
  • cot a = 1/tan a
Similar questions