Math, asked by noopursakpal13, 5 months ago


 \frac{ {x }^{2} - 3x + 7 }{3x - 7}  =  \frac{ {x}^{2} - 2x + 5 }{2x - 5}   \\

Answers

Answered by arpitaabrol3
0

Step-by-step explanation:

please mark me as brainlisttt

Answered by MrImpeccable
2

ANSWER:

Given:

\:\:\:\bullet\:\:\:\dfrac{x^2-3x+7}{3x-7}=\dfrac{x^2-2x+5}{2x-5}

To Find:

  • Value of x

Solution:

We are given that,

:\longrightarrow\dfrac{x^2-3x+7}{3x-7}=\dfrac{x^2-2x+5}{2x-5}

On cross-multiplying,

:\implies(2x-5)(x^2-3x+7)=(3x-7)(x^2-2x+5)

Solving the brackets,

:\implies2x^3-6x^2+14x-5x^2+15x-35=3x^3-6x^2+15x-7x^2+14x-35

On grouping like terms on each side separately,

:\implies2x^3-(6x^2+5x^2)+(14x+15x)-35=3x^3-(6x^2+7x^2)+(15x+14x)-35

Simplifying the terms,

:\implies2x^3-11x^2+29x-35=3x^3-13x^2+29x-35

Bringing all terms from LHS to RHS,

:\implies0=3x^3-13x^2+29x-35-(2x^3-11x^2+29x-35)

So,

:\implies3x^3-13x^2+29x-35-2x^3+11x^2-29x+35=0

Grouping like terms together,

:\implies(3x^3-2x^3)-(13x^2-11x^2)+(29x-29x)+(35-35)=0

Simplifying,

:\implies x^3-2x^2+0+0=0

So,

:\implies x^3-2x^2=0

Taking x² common,

:\implies x^2(x-2)=0

So,

:\implies x^2=0\:\:and\:\:(x-2)=0

Hence,

:\implies\bf x=0,0\:\:and\:\:x=2

Therefore, the value of x is 0, 0 and 2.

Similar questions