Math, asked by Palakakan, 4 months ago


 \frac{x}{4} \sqrt{144 -  {x -}^{2} } -  \frac{x}{4} \sqrt{324 -  {x }^{2} } = 36 \sqrt{2}
Solve for x.​

Answers

Answered by HariesRam
3

\huge{\textbf{\textsf{{\color{navy}{An}}{\purple{sw}}{\pink{er}}{\color{pink}{:}}}}}

Refer from the attachment provided.

❤️

Attachments:
Answered by ridhya77677
1

\frac{x}{4} \sqrt{144 - {x }^{2} } - \frac{x}{4} \sqrt{324 - {x }^{2} } = 36 \sqrt{2}

=  >  \frac{x}{4} ( \sqrt{144 -  {x}^{2}  } -  \sqrt{324 -  {x}^{2} }  ) = 36 \sqrt{2}

=  >  \sqrt{ 144 -  {x}^{2}  } -  \sqrt{ 324  -  {x}^{2} }  = 36 \sqrt{2}  \times  \frac{4}{x}

=  > \sqrt{ 144-  {x}^{2}  } -  \sqrt{ 324-  {x}^{2} }   =  \frac{144 \sqrt{2} }{x}

=  > \sqrt{ 144-  {x}^{2}  }  =   \sqrt{ 324  -  {x}^{2} }   +  \frac{144 \sqrt{2} }{x}

squaring both sides,

 =  >(  { \sqrt{ 144 -  {x}^{2}  } } \: )^{2}  =  ({ \sqrt{ 324  -  {x}^{2} }   +  \frac{144 \sqrt{2} }{x}  })^{2}

=  >  144-  {x}^{2}  =  324 -  {x}^{2}  +  \frac{ ({144 \sqrt{2} })^{2} }{ {x}^{2} }  - 2 \times  \sqrt{ 324-  {x}^{2} }  \times  \frac{144 \sqrt{2} }{x}

=  > 144 - 324 =  \frac{( {144 \sqrt{2} )}^{2} }{ {x}^{2} }  - 2 \sqrt{324 -  {x}^{2} }  \frac{144 \sqrt{2} }{x}

=  >  - 180 =  \frac{144 \sqrt{2} }{x}( \frac{144 \sqrt{2} }{x}  - 2 \sqrt{324 -  {x}^{2} } )

=  >  - 180 \times  \frac{x}{144 \sqrt{2} }  = \frac{144 \sqrt{2} }{x}  - 2 \sqrt{324 -  {x}^{2} }

=  >  -  \frac{5x}{4 \sqrt{2} }  = \frac{144 \sqrt{2} }{x}  - 2 \sqrt{324 -  {x}^{2} }

 =  > 2 \sqrt{324 -  {x}^{2} }  =  \frac{144 \sqrt{2} }{x}  +  \frac{5x}{4 \sqrt{2} }

Squaring both sides again ,

 =  > ( {2 \sqrt{324 -  {x}^{2} }} \: )^{2}  =({\frac{144 \sqrt{2} }{x}  +  \frac{5x}{4 \sqrt{2} }})^{2}

 =  > 4(324 -  {x}^{2} ) =  \frac{ {(144 \sqrt{2} })^{2} }{ {x}^{2} }  +  \frac{( {5x)}^{2} }{ ({4 \sqrt{2} })^{2} }  + 2 \times  \frac{144 \sqrt{2} }{x}  \times  \frac{5x}{4 \sqrt{2} }

 =  > 4  \times 324 - 4 {x}^{2}  =  \frac{ ({144 \sqrt{2} })^{2} }{ {x}^{2} }   +  \frac{25 {x}^{2} }{32}  + 72 \times 5

 =  > 1296  =  4 {x}^{2}   +   \frac{25 {x}^{2} }{32}   +   \frac{20736 \sqrt{2} }{ {x}^{2} }   + 360

 =  > 4 {x}^{2}   +   \frac{25 {x}^{2} }{32}    =  \frac{20736 \sqrt{2} }{ {x}^{2} }  - 936

 =  >  \frac{128 {x}^{2}  + 25 {x}^{2} }{32}  =  \frac{20736 \sqrt{2} - 936 {x}^{2}  }{ {x}^{2} }

 =  >  {x}^{2} (  153 {x}^{2}  ) = 32(20736 \sqrt{2} - 936 {x}^{2} )

=> 17×9x⁴ = 32×9(2304√2-104x²)

→ 17x⁴ = 73728√2-3328x²

→ 17x⁴+3328x²-73728 = 0

Similar questions