Math, asked by harshity7171, 4 months ago


 \frac{x +  \frac{5}{2} }{2x -  \frac{3}{5} }  -  \frac{x + 3}{2x + 1}  = 0

Answers

Answered by Kingtgreat
1

Answer:

\frac{x + \frac{5}{2} }{2x - \frac{3}{5} } - \frac{x + 3}{2x + 1} = 0 \\ \\ \frac{x + \frac{5}{2} }{2x - \frac{3}{5} }  = \frac{x + 3}{2x + 1} \\ \\ \frac{ \frac{2x + 5}{2} }{ \frac {10x - 3}{5} }  =  \frac{x + 3}{2x + 1}  \\ \\ \frac{2x + 5}{2}  \times  \frac{5}{10x - 3}  =  \frac{x + 3}{2x + 1} \\ \\ \frac{2x + 5(5)} {10x - 3(2)}  =  \frac{x + 3}{2x + 1}  \\ \\ \frac{10x + 25}{20x  -  6}  = \frac{x + 3}{2x + 1}  \\ \\ \frac{20 { x}^{2}  + 60x + 25}{20 {x}^{2}  + 54x  - 18}  = 1 \\ \\ {20 { x}^{2}  + 60x + 25} =  \\ 20 {x}^{2}  + 54x  - 18 \\ \\ 6x + 43 \: \\ x =  \frac{ - 43}{6}

Similar questions