Math, asked by jeshan04, 11 months ago

\frac{x lnx}{e^x} Differentiate the following functions w.r.t. x

Answers

Answered by BrainlyYoda
16

Solution:

To differentiate \frac{xln(x)}{e^{x} } with respect to x.

We can rewrite \frac{xln(x)}{e^{x} } as xe^{-x}ln(x)

\frac{d}{dx} [xe^{-x}ln(x)]

[Apply Product Rule => [uvw]' = u'vw + uv'w + uvw']

\frac{d}{dx} [x] . e^{-x} ln(x) + x.\frac{d}{dx}[e^{-x}].ln(x) + xe^{-x} . \frac{d}{dx}[ln(x)]

1e^{-x} ln(x) + xe^{-x}.\frac{d}{dx}[-x].ln(x) + xe^{-x}  .\frac{1}{x}

xe^{-x} (-\frac{d}{dx}[x])ln(x) + e^{-x}ln(x) + e^{-x}

-xe^{-x}. 1ln(x) + e^{-x}  ln(x) + e^{-x}

-xe^{-x} ln(x) + e^{-x}ln(x) + e^{-x}

We can rewrite the answer as

-e^{-x} ((x-1)ln(x)-1)

The differentiation of \frac{xln(x)}{e^{x} } is -xe^{-x} ln(x) + e^{-x}ln(x) + e^{-x} or -e^{-x} ((x-1)ln(x)-1).

Extra Information:

The sign [ ' ] means single time differentiation.

As there are more signs number of differentiation times increases.

Similar questions