Math, asked by zihanhusna246, 5 months ago


 \frac{x}{x - 2}  \leqslant 3

Answers

Answered by Anonymous
12

 \LARGE \bull \:   \:  \: \bf{Given :}

  \to \large {\bold{ \sf \:  \frac{x}{x - 2}   \leqslant 3}} \\

 \LARGE \bull \:   \:  \: \bf{ Solution :}

  \sf \large \:  \frac{x}{x - 2}  \leqslant 3 \\  \\  \implies \sf  \large \:  {( \frac{x}{x - 2}) }^{ - 1}  \geqslant  {3}^{ - 1}  \\  \\  \implies \sf \large1 -  \frac{2}{x}  \geqslant  \frac{1}{3}  \\  \\  \sf \implies \large \:  \frac{2}{x}  \leqslant  \frac{2}{3}  \\  \\  \implies \sf \large { \boxed{\boxed{ \sf x \geqslant  3}}}

 \LARGE  \sf   \therefore\: x \in[3\:, \infty )

________________________________________________________

HOPE THIS IS HELPFUL...

Similar questions