Math, asked by Anonymous, 4 days ago

\Gamma(x) \Gamma(1 - x) = \frac{\pi}{ \sin(\pi x) }

Answers

Answered by sajan6491
10

  \rm\pink{ \Gamma(x) \Gamma(1 - x) = \frac{\pi}{ \sin(\pi x) }}

 \displaystyle \rm \Beta(m,n) =  \int_{0}^{ \infty } \frac{ {x}^{n - 1} }{(1 + x) {}^{m + n} } dx

 \displaystyle \rm \Beta(m,n) =   \frac{  \Gamma(m)\Gamma(n) }{ \Gamma(m + n)}

 \displaystyle \rm   \displaystyle \rm  \frac{  \Gamma(m)\Gamma(n) } {\Gamma (m + n)}=  \int_{0}^{ \infty } \frac{ {x}^{n - 1} }{(1 + x) {}^{m + n} } dx

m=1-n , m>0, 1-n>0

m>0, 0<n<1

 \displaystyle \rm   \frac{\Gamma(1 - n)\Gamma(n)}{\Gamma(1 - n + n)}   =  \int_{0}^{ \infty } \frac{ {x}^{n - 1} }{(1 + x) {}^{ - 1 - n + n}  }  \: dx

 \displaystyle \rm \Gamma(1 - x) \Gamma(x)  =  \int_{0}^{ \infty } \frac{ {x}^{n - 1} }{(1 + x) }  \: dx

 \rm\Gamma(1 - n)\Gamma(n) =  \frac{\pi}{ \sin(\pi x) }

  \rm{ \Gamma(x) \Gamma(1 - x) = \frac{\pi}{ \sin(\pi x) }}

Similar questions