Math, asked by DhanyaDA, 1 year ago


given \: sina + cosa =  \dfrac{1}{5}  \\ and \: 0 \leqslant a \ < \pi \\  \\ find \: tana

Answers

Answered by shadowsabers03
79

sin (a) + cos (a) = 1/5 → (1)

=> (sin (a) + cos (a))² = (1/5)²

=> sin² (a) + cos² (a) + 2 sin (a) cos (a) = 1/25 → (2)

=> 1 + 2 sin (a) cos (a) = 1/25

=> 2 sin (a) cos (a) = (1/25) - 1

=> 2 sin (a) cos (a) = - 24/25 → (3)

(2) - (2 · (3))

=> sin² (a) + cos² (a) + 2 sin (a) cos (a) - 2(2 sin (a) cos (a)) = 1/25 - 2 · (- 24/25)

=> sin² (a) + cos² (a) + 2 sin (a) cos (a) - 4 sin (a) cos (a) = (1/25) + (48/25)

=> sin² (a) + cos² (a) - 2 sin (a) cos (a) = 49/25

=> (sin (a) - cos (a))² = 49/25

=> sin (a) - cos (a) = ± 7/5

Let sin (a) - cos (a) = 7/5. → (4)

(1) + (4)

=> (sin (a) + cos (a)) + (sin (a) - cos (a)) = (1/5) + (7/5)

=> 2 sin (a) = 8/5

=> sin (a) = 4/5

(1) - (4)

=> (sin (a) + cos (a)) - (sin (a) - cos (a)) = (1/5) - (7/5)

=> 2 cos (a) = - 6/5

=> cos (a) = - 3/5

This implies that 'a' lies in second quadrant, since 0 ≤ a < π.

Now,

tan (a) = sin (a) / cos (a)

tan (a) = (4/5) / (- 3/5)

tan (a) = (4/5) × (- 5/3)

tan (a) = - 4/3

Let sin (a) - cos (a) = - 7/5. → (5)

(1) + (5)

=> (sin (a) + cos (a)) + (sin (a) - cos (a)) = (1/5) + (- 7/5)

=> 2 sin (a) = - 6/5

=> sin (a) = - 3/5

But since 0 ≤ a < π, 'a' lies in either first quadrant or in second quadrant, so sin (a) is non - negative in each case. Thus sin (a) can't be - 3/5.

Hence tan (a) = - 4/3.


Anonymous: great bro ⭐
shadowsabers03: Thank you.
DhanyaDA: osm
shadowsabers03: Thanks.
Anonymous: well done bro!
Brâiñlynêha: osm ✌️✌️
Anonymous: ⭐⭐⭐⭐
AainaJaiswal: Amazing!
khushijindal60: Amazing answer ^_^
shadowsabers03: A great thanks to all!
Answered by Anonymous
87

Solution :-

We will be using these relations in solving :-

 \star tan \theta= \dfrac{sin\theta}{cos\theta}

 \star cos\theta = \dfrac{1}{\sqrt{1+tan^2\theta}}

 \star sin\theta = \dfrac{tan\theta}{\sqrt{1+tan^2\theta}}

Now as given

sin(a) + cos(a) = \dfrac{1}{5}

By substituting the sin(a) and cos(a) in terms of tan(a)

 \rightarrow \dfrac{tan(a)}{\sqrt{1+tan^2(a)}} + \dfrac{1}{\sqrt{1+tan^2(a)}} = \dfrac{1}{5}

 \rightarrow \dfrac{tan(a) + 1}{\sqrt{1+tan^2(a)}} = \dfrac{1}{5}

Now we will take tan(a) = k

 \rightarrow \dfrac{k + 1}{\sqrt{1+k^2}} = \dfrac{1}{5}

Now we will square both sides :-

 \rightarrow \left( \dfrac{k + 1}{\sqrt{1+k^2}} \right)^2 = \left(\dfrac{1}{5}\right)^2

 \rightarrow \dfrac{k^2 + 2k + 1}{ 1 + k^2 } = \dfrac{1}{25}

By cross multiplication :-

 \rightarrow 25(k^2 + 2k + 1)  = 1 + k^2

 \rightarrow 25k^2 + 50k + 25 = 1 + k^2

\rightarrow 24k^2 + 50k + 24 = 0

Now solving the quadratic equation :-

 \rightarrow k = \dfrac{ -50 \pm \sqrt{(50)^2 - 4(24)(24)}}{2(24)}

 \rightarrow k = \dfrac{ -50 \pm \sqrt{2500 - 2304}}{48}

 \rightarrow k = \dfrac{-50 \pm \sqrt{ 196}}{48}

\rightarrow k = \dfrac{ -50 \pm 14}{48}

 \rightarrow k = \dfrac{-50 + 14}{48} \: \: or \: \: \dfrac{-50 - 14}{48}

 \rightarrow k = \dfrac{-36}{48} \: or \: \dfrac{-64}{48}

 \rightarrow tan(a) = \dfrac{-36}{48} \: or \: \dfrac{-64}{48}

Now as 0 < a < π

 \rightarrow tan(a) =  \dfrac{-64}{48}

 \huge{\boxed{\sf{ tan(a) = \dfrac{-4}{3}}}}


Anonymous: Thanks ^_^
Anonymous: well^_^
Brâiñlynêha: NYC ✌️✌️
ankit23789: hi
Anonymous: Fabulous...❤❤❤
khushijindal60: Amazing answer ^_^
shadowsabers03: Great answer! I think this is the right method.
Anonymous: Thanks to all ^_^
Anonymous: PERFECT ! ✌️
Anonymous: Thanks ^_^ !
Similar questions