Math, asked by brain123401, 1 year ago


{} \{ =  > find \: the \: sum \: to \: n \: terms \:   of  \\ \: the \: sequence \: 8 \: 88 \: 888 \: 8888..............
{} \huge \red{ answer \:  it.....}

Answers

Answered by rishu6845
2

Answer:

ans is

8 10(10^n-1)

-----{ ------------------- - n}

9 9

Step-by-step explanation:

formula used

a(r^n-1)

1----->S =---------------

n (r-1)

2------->1+1+1+1+.......to n terms=n

now

S=8+88+888+...................

=8(1+11+111+...............)

8

= -----(9+99+999+...........)

9

8

= -------{(10-1)+(100-1)+(1000-1)+..........}

9

8

=---------{(10+100+1000+....)-(1+1+1+.....)}

9

8 10(10^n-1)

=---------{-------------------- - n }

9 (10-1)

8 10(10^n-1)

=---------{ -------------------- -n}

9 9

Answered by Rudra0936
3

refer to the attachment

Attachments:
Similar questions