Math, asked by ayush579, 1 year ago

\huge{\bf{\blue {\fbox{\underline{\color{red}{HELP\:ME}}}}}}
️️️️️️️️️
FAST PLEASE HELP ME
GUYS HELP ME ❤️⛄

\huge{\bf{\red {\fbox{\underline{\color{purple}{FAST}}}}}}

<b><marquee>
‌✌️ ✨HELP ME✨ ✌️ 

Attachments:

riyansh5: mahesh ji kya rahe ho

Answers

Answered by singhmahesh140
3
# i hope it will help you
Attachments:

singhmahesh140: aur kya aayegi hi bhai
ayush579: suna de bhai hum to tere hi hai tu bhale hi kisi or ka ho gya ho
ayush579: ushek jahda to tujhe dukh hota hai kyu kahin comments na padhle
singhmahesh140: haan tu mera hi h
singhmahesh140: hahahahaha
ayush579: chal chod baat jayda padh jayegi but i am kidding yrr enjoy life don't waste time in all things
ayush579: hahahaha
singhmahesh140: hum krte hi nahi h time waste
singhmahesh140: hahahahaha
ayush579: okay ji o to dikhta hai☕☕
Answered by Avengers00
20
\underline{\underline{\huge{\textbf{Solution:}}}}

Given,
\underline{\textit{Statement:}}
Product of Probabilities of happening and non-happening of an Event is \frac{6}{25}

\underline{\large{\textsf{Step-1:}}}
Assume a Variable for happening and non-happening of an Event

Let E represents the happening of an Event
and E' represents the non-happening of an Event

\underline{\large{\textsf{Step-2:}}}
Rewrite Statement-1

\implies P(E) \times P(E') = \frac{6}{25}

\underline{\large{\textsf{Step-3:}}}
Express the Probability of non- happening of Event in terms of Probability of happening of Event

\implies P(E') = \frac{1}{P(E)} \times \frac{6}{25}

\implies P(E') = \frac{6}{25P(E)} ————[1]

\underline{\large{\textsf{Step-4:}}}
Using the Identity \mathbf{P(S) = 1} (or \textsf{Sum of Probabilities is equal to 1})

We have,
 S = E + E'

And
 P(S) = P(E) + P(E')

\implies P(E) + P(E') = 1 ————[2]

\underline{\large{\textsf{Step-5:}}}
Substituting [2] in [1]

\implies P(E) + \frac{6}{25P(E)}= 1

\implies \frac{25(P(E))^{2} + 6}{25P(E)}= 1

\implies 25(P(E))^{2} + 6 =25P(E)

\implies 25(P(E))^{2} -25P(E) + 6 = 0————[3]

\underline{\large{\textsf{Step-5:}}}
Solve for the Roots of Quadratic equation

We have,
\textbf{For Quadratic equation $ax^{2}+bx+c=0$}

The Roots are
\mathbf{x = \dfrac{-b+\sqrt{b^{2}-4ac}}{2a}},

\mathbf{x = \dfrac{-b+\sqrt{b^{2}-4ac}}{2a}}.

Comparing [3] with general form of Quadratic Equation

 a = 25, b = -25, c = 6

On Substituting

One of the Root,
P(E) = \dfrac{-(-25)+\sqrt{(-25)^{2}-(4(25)(6)}}{2(25)}

\implies P(E) = \dfrac{25+\sqrt{625-600}}{50}

\implies P(E) = \dfrac{25+\sqrt{25}}{50}

\implies P(E) = \dfrac{25+5}{50}

\implies P(E) = \dfrac{30}{50}

\implies P(E) = \dfrac{3}{5}

And other Root,
P(E) = \dfrac{-(-25)-\sqrt{(-25)^{2}-(4(25)(6)}}{2(25)}

\implies P(E) = \dfrac{25-\sqrt{625-600}}{50}

\implies P(E) = \dfrac{25-\sqrt{25}}{50}

\implies P(E) = \dfrac{25-5}{50}

\implies P(E) = \dfrac{20}{50}

\implies P(E) = \dfrac{2}{5}

\underline{\large{\textsf{Step-6:}}}
Verify that Probabilities satisfy \mathbf{0 \leq P(E) \leq 1}

P(E) = \dfrac{3}{5} = 0.6

0 \leq (0.6) \leq 1(\textsf{Satisfied})

P(E) = \dfrac{2}{5} = 0.6

0 \leq (0.4) \leq 1(\textsf{Satisfied})

\therefore

\textbf{Probability\: of\: happening\: of\: an\: Event =\underline{\mathbf{\dfrac{3}{5}\: or\: \dfrac{2}{5}}}}
Similar questions