Math, asked by Itzbrainlystar30, 5 months ago

\huge\bf{Question =>}

In figure AOB is a line and ray OC is perpendicular to AB . If OD is another ray lying between OB and OC . Prove that angle cod =1/2 (angle AOD- angle BOD)

Don't Spam !!​

Attachments:

Answers

Answered by BossWire6
2

Answer:

Given below... Mark it as brainliest

Step-by-step explanation:

COB = 90°

AOC = 90°

COD = AOC - AOD

= 90 ° - AOD

So,

COD + AOD = 90°

Since, OC is perpendicular to AB

Therefore, AOD = 2/3 AOC

= 150/3

= 50°

So,

COD = 90° - 50°

= 40°

BOD - AOD = 80°

So,

1/2 × 80° = 40°

LHS = RHS

Hence proved

Answered by NewGeneEinstein
12

Correct Question :-

In figure AOB is a line and ray OC is perpendicular to AB . If OD is another ray lying between OB and OC . Prove that angle cod =1/2 (angle BOD- angle AOD)

Given:-

  • In figure AOB is a line and ray OC is perpendicular to AB.
  • OD is another ray lying between OB and OC .

To prove:-

\sf \angle {COD}=\dfrac {1}{2}(\angle BOD-\angle AOD)

Proof:-

Here ray CO is a Perpendicular to line AOB

{:}\longrightarrow\sf m\angle BOC=m\angle AOC=90°\dots (1)

  • And ,

\sf \angle COD=\angle AOC-\angle AOD

{:}\longrightarrow\sf \angle COD=90°-\angle AOD \left [\because from\: eq (1)\right]

  • Simplify

{:}\longrightarrow\sf \angle COD+\angle AOD=90°\dots(2)

  • Here,

CO is Perpendicular to AB \sf \left[\because Given\right]

{:}\longrightarrow\sf \angle AOD=\dfrac {2}{3}\angle AOC

{:}\longrightarrow\sf \angle AOD=\dfrac {150}{3}

{:}\longrightarrow\sf m\angle AOD=50°\dots (3)

  • Substitute the value in eq (1)

{:}\longrightarrow\sf \angle COD+50=90°

{:}\longrightarrow\sf \angle COD=90°-50°

{:}\longrightarrow\sf m\angle COD=40°\dots (4)

  • Again,

Here All angles are present on one line AB.Hence measure of the angles is 180°

{:}\longrightarrow\sf \angle AOD+\angle BOD=180°

{:}\longrightarrow\sf 50°+\angle BOD=180°

{:}\longrightarrow\sf \angle BOD=180-50

{:}\longrightarrow\sf m\angle BOD=130°\dots (5)

  • From eq (3) and eq (5)

{:}\longrightarrow\sf \dfrac {1}{2}(\angle BOD-\angle AOD)

{:}\longrightarrow\sf \dfrac {1}{2}(130-50)

{:}\longrightarrow\sf \dfrac {80}{2}

{:}\longrightarrow\sf 40°\dots (6)

  • Combine eq (4) and eq (6)

{:}\longrightarrow\sf m\angle COD=\dfrac {1}{2}(\angle BOD-\angle AOD)

{:}\longrightarrow\sf 40°=40°

\therefore\underline{\underline{\sf Hence\: Proved.}}

Similar questions