Math, asked by Anonymous, 2 days ago

 \huge{ \bold \red{\int_{1}^{a}(2x - 1) dx = 6}}



❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​​​​​​​​​​​​​​​​​​​​​​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int_1^a\rm (2x - 1) \: dx \:  =  \: 6

We know,

\boxed{ \tt{ \:  \displaystyle \int  {x}^{n}  \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1} + c \: }}

So, using this, we get

\rm :\longmapsto\:\bigg[\dfrac{2 {x}^{2} }{2}  - x\bigg]_1^a = 6

\rm :\longmapsto\:\bigg[ {x}^{2}   - x\bigg]_1^a = 6

\rm :\longmapsto\:( {a}^{2} - a) - (1 - 1) = 6

\rm :\longmapsto\:{a}^{2} - a= 6

\rm :\longmapsto\:{a}^{2} - a - 6 = 0

\rm :\longmapsto\:{a}^{2} - 3a  + 2a- 6 = 0

\rm :\longmapsto\:a(a - 3) + 2(a - 3) = 0

\rm :\longmapsto\:(a - 3)(a + 2) = 0

\bf\implies \:a = 3 \:  \:  \: or \:  \:  \: a \:  =   \: -  \: 2

Verification :-

When a = - 2

\rm :\longmapsto\:\displaystyle\int_1^{ - 2}\rm (2x - 1) \: dx \:  =  \: 6

\rm :\longmapsto\:\bigg[\dfrac{2 {x}^{2} }{2}  - x\bigg]_1^{ - 2} = 6

\rm :\longmapsto\:\bigg[ {x}^{2}   - x\bigg]_1^{ - 2} = 6

\rm :\longmapsto\:[4 - ( - 2)] - (1 - 1) = 6

\bf\implies \:6 = 6

Hence, Verified

When a = 3

\rm :\longmapsto\:\displaystyle\int_1^{3}\rm (2x - 1) \: dx \:  =  \: 6

\rm :\longmapsto\:\bigg[\dfrac{2 {x}^{2} }{2}  - x\bigg]_1^{3} = 6

\rm :\longmapsto\:\bigg[ {x}^{2}   - x\bigg]_1^{3} = 6

\rm :\longmapsto\:[9 - 3] - [ 1 - 1] = 6

\bf\implies \:6 = 6

Hence, Verified

Explore more :-

 \blue{\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}}

Similar questions