Math, asked by itzsnowqueen91, 1 month ago


 \huge \bold \red{question - }

 \huge {x}^{4}  +  \frac{1}{ {x}^{4} }
 \huge \: if \:  \:  \: x +  \frac{1}{x}  = 7

 \huge solve  \:  \: \: the \:  \:  \: question

Answers

Answered by VεnusVεronίcα
58

\sf Squaring~ on~ both~ sides:

 \:

  \qquad\bf  \dashrightarrow \:   { \bigg \lgroup x + \dfrac{1}{x} \bigg \rgroup  }^{2}  = {\bigg \lgroup7 \bigg \rgroup }^{2}

 \:

 \bf \qquad \dashrightarrow \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2  \: \bigg(x \bigg)  \: \bigg( \dfrac{1}{x}  \bigg) = 49

 \:

 \bf \qquad \dashrightarrow \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2 \:  \bigg( \cancel{x} \bigg) \:  \bigg( \dfrac{1}{ \cancel{x} } \bigg) = 49

 \:

 \qquad \bf \dashrightarrow \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 49 - 2

 \:

 \bf \qquad \dashrightarrow \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 47

 \\

\sf Squaring~ on~ both~ sides~ again:

 \:

 \bf \qquad \dashrightarrow \:   { \bigg \lgroup {x}^{2}  +  \dfrac{1}{ {x}^{2} }  \bigg \rgroup}^{2}  =  {\bigg  \lgroup47 \bigg \rgroup}^{2}

 \:

 \bf \qquad \dashrightarrow \:  \bigg( {x ^{2}   \bigg)}^{2}  +  \:  \bigg (\dfrac{1}{ {x}^{2} }  \bigg) ^{2}  + 2 \:  \bigg( {x}^{2}  \bigg) \:  \bigg( \dfrac{1}{ {x}^{2} }  \bigg) =  2209

\:

 \bf \qquad \dashrightarrow \:  {x}^{4}  +  \dfrac{1}{ {x}^{4} }  + 2 \:  \bigg(  \cancel{{x}^{2} } \bigg) \:  \bigg(  \dfrac{1}{  \cancel{{x}^{2} }}  \bigg) = 2209

 \:

 \bf \qquad \dashrightarrow \:  {x}^{4}  +  \dfrac{1}{ {x}^{4} }  = 2209 - 2

 \:

 \bf \qquad \dashrightarrow \:  {x}^{4}  +  \dfrac{1}{ {x}^{4} }  = 2207

\\

\therefore~\sf{The~value~ of~ \bigg\lgroup x^4+\dfrac{1}{x^4}\bigg\rgroup~ is~\pmb{2207}~ when~\bigg\lgroup x+\dfrac{1}{x}\bigg\rgroup~ =7.}

Similar questions