Math, asked by Anonymous, 1 month ago


\huge \bold \red{\sf\displaystyle \lim_{x \to 0} \bigg(\dfrac{x^{2} + 3x }{x^{3} + 2x} \bigg)}



❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​​​​​​​​​​​​​​​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

\displaystyle \lim_{x \to 0} \bigg(\dfrac{x^{2} + 3x }{x^{3} + 2x} \bigg)

 = \displaystyle \lim_{x \to 0} \dfrac{x(x+ 3) }{x( {x}^{2}  + 2)}

 = \displaystyle \lim_{x \to 0} \dfrac{x+ 3}{{x}^{2}  + 2}

 = \dfrac{0+ 3}{0 + 2}

 = \dfrac{ 3}{ 2}

Answered by Sahan677
15

 \lim_{x \to 0} \frac{x^{2} + 3 x}{x^{3} + 2 x}

Factor:

\color{red}{\lim_{x \to 0} \frac{x^{2} + 3 x}{x^{3} + 2 x}} = \color{red}{\lim_{x \to 0} \frac{x \left(x + 3\right)}{x \left(x^{2} + 2\right)}}

Cancel the common term:

\color{red}{\lim_{x \to 0} \frac{x \left(x + 3\right)}{x \left(x^{2} + 2\right)}} = \color{red}{\lim_{x \to 0} \frac{x + 3}{x^{2} + 2}}

Substitute the variable with the value:

\color{red}{\lim_{x \to 0} \frac{x + 3}{x^{2} + 2}} = \color{red}{\left(\frac{3}{2}\right)}

Therefore,

\lim_{x \to 0} \frac{x^{2} + 3 x}{x^{3} + 2 x} = \frac{3}{2}

Answer:

\lim_{x \to 0} \frac{x^{2} + 3 x}{x^{3} + 2 x}=\frac{3}{2}

Similar questions