Math, asked by Anonymous, 1 month ago


 \huge{ \boxed{ \bold \red{ \int \limits_0^{1}  {x}^{ - x}  \: dx}}}

●Only proper solved answer
●No Spam
●Only for moderators Brainly Stars and other best users ​

Answers

Answered by Sahan677
6

{ \displaystyle{\bold \red{ \int \limits_0^{1} {x}^{ - x} \: dx}}}

{ \displaystyle{\bold \red{ \int \limits_0^{1}  {e}^{ - x \: Inx} dx}}}

{ \displaystyle{\bold \red{e {}^{x} =  \sum \limits_ {n = 0} ^{ \infty}   \frac{ {x}^{n} }{ {n}{ᴉ } } }}}

{ \displaystyle{\bold \red{ \int \limits_0^{1}  \sum \limits_ {n = 0} ^{ \infty} \frac{( - Inx) {}^{n} {x}^{n} }{nᴉ} \: dx }}}

{ \displaystyle{\bold \red{  \sum \limits_ {n = 0} ^{ \infty} \int \limits_0^{1} \frac{( - Inx) {}^{n} {x}^{n}}{nᴉ}  \: dx}}}

 \large \bold \red{u=-Inx}

 \large \bold \red{x =  {e}^{ - u}}

 \large \bold \red{dx =  { - e}^{ - u} du}

{ \displaystyle{\bold \red{  \sum \limits_ {n = 0} ^{ \infty}  \frac{1}{nᴉ} \int \limits_0^{ \infty } u {}^{n} e {}^{ - (n + 1)u}du }}}

 \bold \red{v =n + 1}

 \bold \red{dv =du}

{ \displaystyle{\bold \red{  \sum \limits_ {n = 0} ^{ \infty}  \frac{1}{nᴉ} \int \limits_0^{ \infty }  \frac{ {v}^{n} }{n + 1}  e {}^{2 - v}  \frac{dv}{n + 1} }}}

{ \displaystyle{\bold \red{  \sum \limits_ {n = 0} ^{ \infty}  \frac{1}{nᴉ} \frac{1}{(n + 1) {}^{n + 1} }  \int \limits_0^{ \infty }v {}^{n - v}e  \: dv }}}

{ \displaystyle{\bold \red{  \sum \limits_ {n = 0} ^{ \infty}  \frac{1}{nᴉ} \frac{1}{(n + 1) {}^{n + 1} }  nᴉ }}}

{ \displaystyle{\bold \red{  \sum \limits_ {n = 0} ^{ \infty}   \cancel\frac{1}{nᴉ} \frac{1}{(n + 1) {}^{n + 1} }   \cancel{nᴉ} =  \sum \limits _{n = 1}^{ \infty }  \frac{1}{ {n}^{n} } }}}

{ \displaystyle{\bold \red{ \int \limits_0^{1} {x}^{ - x} \: dx =\sum \limits _{n = 1}^{ \infty } {n}^{ - n} }}}

Answered by OoAryanKingoO78
2

Answer:

{ \displaystyle{\bold \red{ \int \limits_0^{1} {x}^{ - x} \: dx}}}

{ \displaystyle{\bold \red{ \int \limits_0^{1}  {e}^{ - x \: Inx} dx}}}

{ \displaystyle{\bold \red{e {}^{x} =  \sum \limits_ {n = 0} ^{ \infty}   \frac{ {x}^{n} }{ {n}{ᴉ } } }}}

{ \displaystyle{\bold \red{ \int \limits_0^{1}  \sum \limits_ {n = 0} ^{ \infty} \frac{( - Inx) {}^{n} {x}^{n} }{nᴉ} \: dx }}}

{ \displaystyle{\bold \red{  \sum \limits_ {n = 0} ^{ \infty} \int \limits_0^{1} \frac{( - Inx) {}^{n} {x}^{n}}{nᴉ}  \: dx}}}

 \large \bold \red{u=-Inx}

 \large \bold \red{x =  {e}^{ - u}}

 \large \bold \red{dx =  { - e}^{ - u} du}

{ \displaystyle{\bold \red{  \sum \limits_ {n = 0} ^{ \infty}  \frac{1}{nᴉ} \int \limits_0^{ \infty } u {}^{n} e {}^{ - (n + 1)u}du }}}

 \bold \red{v =n + 1}

 \bold \red{dv =du}

{ \displaystyle{\bold \red{  \sum \limits_ {n = 0} ^{ \infty}  \frac{1}{nᴉ} \int \limits_0^{ \infty }  \frac{ {v}^{n} }{n + 1}  e {}^{2 - v}  \frac{dv}{n + 1} }}}

{ \displaystyle{\bold \red{  \sum \limits_ {n = 0} ^{ \infty}  \frac{1}{nᴉ} \frac{1}{(n + 1) {}^{n + 1} }  \int \limits_0^{ \infty }v {}^{n - v}e  \: dv }}}

{ \displaystyle{\bold \red{  \sum \limits_ {n = 0} ^{ \infty}  \frac{1}{nᴉ} \frac{1}{(n + 1) {}^{n + 1} }  nᴉ }}}

{ \displaystyle{\bold \red{  \sum \limits_ {n = 0} ^{ \infty}   \cancel\frac{1}{nᴉ} \frac{1}{(n + 1) {}^{n + 1} }   \cancel{nᴉ} =  \sum \limits _{n = 1}^{ \infty }  \frac{1}{ {n}^{n} } }}}

{ \displaystyle{\bold \red{ \int \limits_0^{1} {x}^{ - x} \: dx =\sum \limits _{n = 1}^{ \infty } {n}^{ - n} }}}

Similar questions