Math, asked by rambo55, 1 year ago

\huge\boxed{\texttt{fcolorbox{red}{aqua}{Challenge}}}


\bold{find\:the\:value\:of}

 \lim_{x \to \frac{\pi}{2}} ( \sec \: x   \:  -  \:  \tan \: x \: )


sanjay270899: Answer is zero?

Answers

Answered by sanjay270899
3
I am using L'Hopital's rule for solving this question.

In L'Hopital's rule, we differentiate numerator and denominator both w.r.t. x.

Answer is zero (0).
Attachments:

Swarnimkumar22: nice
rambo55: thank you
sanjay270899: Welcome
Answered by Swarnimkumar22
9

\huge\bold{Hay\:mate}}


\bold{Your\:answer\:is.\:\:0}


\bold{step\:by\:step\:solution →}

 \lim_{x \to \frac{\pi}{2}} ( \sec \: x   \:  -  \:  \tan \: x \: ) \:   \:  \:



 \lim _{x \to  \frac{\pi}{2} } \: [ \frac{1 - sin \: x}{cos \: x}  ]



 \lim _{x \to  \frac{\pi}{2} } \: [ \frac{( {cos}^{2} \frac{1}{2}x \:  +  \:  {sin}^{2}  \frac{1}{2}  x \: ) - 2 \: sin \frac{1}{2}  x \: cos \frac{1}{2}x }{ {cos}^{2} \frac{1}{2}x -  {sin}^{2}   \frac{1}{2}x }  ]




 \lim _{x \to  \frac{\pi}{2} } \: [  \frac{(cos \:  \frac{1}{2}x - sin \frac{1}{2} x  ) {}^{2} }{(cos \frac{1}{2}x - sin \frac{1}{2}x)(cos \frac{1}{2} x + sin \frac{1}{2}x)   } ] \:




 \lim _{x \to  \frac{\pi}{2} } \:  \frac{(cos \frac{1}{2} x - sin \frac{1}{2}x) }{(cos \frac{1}{2}x + sin \frac{1}{2} x) }





 \lim _{x \to  \frac{\pi}{2} } \frac{cos \frac{1}{4} \pi - sin \frac{1}{4} \pi}{cos \frac{1}{4}\pi + sin \frac{1}{4}  \pi}






 =  \frac{(1/ \sqrt{2}) - (1 / \sqrt{2}) }{(1/ \sqrt{2}) +  (1/ \sqrt{2}) }  \\  \\  \\  \\  \\  =  \frac{0}{2/ \sqrt{2} }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 0





I hope it's help you




 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   @swarnimkumar22


rambo55: thanks
sanjay270899: Your answer is also a good one. Without any shortcuts. Nice.
Similar questions