Math, asked by simra4825, 2 months ago

 \huge\color{pink}\mathfrak{Help Needed}
Prove this
 \frac{ Cos(90 -A) }{sinA} =  \frac{sin(90 - A)}{cosA}

Answers

Answered by brainlyofficial11
4

To prove

 \bold{\frac{ Cos(90 -A) }{sinA} = \frac{sin(90 - A)}{cosA}} \\

__________________________

 \bold{LHS = {\frac{ Cos(90 -A) }{sinA} }} \\

and

 \bold{RHS = \frac{sin(90 - A)}{cosA}} \\

__________________________

first we solve LHS

 \bold{LHS = {\frac{ Cos(90 -A) }{sinA} }} \\

and we know that,

 \boxed{ \bold{Cos(90 -A)  = sinA} }

 \bold{ \implies \: LHS =   \cancel\frac{SinA}{SinA} } \\  \\  \bold{ \implies LHS =  1}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

________________________________

now, we solve RHS

 \bold{RHS = \frac{sin(90 - A)}{cosA}} \\

and we know that,

 \boxed{ \bold{sin(90 -A)  = cosA} }

 \bold{ \implies RHS =  \cancel \frac{cosA}{cosA} } \\  \\  \bold{ \implies \:RHS =1 } \:  \:  \:  \:  \:  \:  \:  \:

so, LHS = RHS

hence, proved

Similar questions