Math, asked by Mysterioushine, 9 months ago

\huge\color{teal}{\bold{\underline{\underline{Question:-}}}}

If α , β are the roots of ax² + 2bx + c = 0 and α + δ , β + δ are the roots of Ax² + 2Bx + C = 0 , then
\large\rm{\frac{b^2-ac}{B^2-AC}} is

1] \large\rm{\frac{a}{A}}

2] \large\rm{\frac{a^2}{A^2}}

3] \large\rm{\frac{a^3}{A^3}}

4] None of these ​

Answers

Answered by jtg07
30

question:

•alpha , beta are the roots of ax²+2bx+c=0

•alpha+Delta, beta+Delta are the roots of Ax²+2Bx+C=0

to find:

the ratio of \tt \dfrac{b^2-ac}{B^2-AC}

solution:

since we see alpha as well as beta common in both equations,

we will try to convert this equation into a equation wherein the roots appear similar.

\boxed{\red{\tt difference of roots = ✓4b^2-4ac/a^2}}

__________________________

__________________________

you can derive this by squaring alpha-beta as:

\tt (alpha-beta)²=alpha²+beta²-2alphabeta

\tt =(-b/a)²-4c/a

\tt =√4b²-4ac/a²

__________________________

__________________________

so,

let's take the ratio of both equations as difference of roots

\tt alpha-beta=√4b²-4ac/a²

\tt alpha+delta-beta-delta=√4B²-4AC/A²

__________________________

__________________________

taking ratio,

\tt \dfrac{alpha-beta}{alpha-beta} =\dfrac{ 4b²-4ac×A²}{a²×4B²-4AC}

\tt 1 =\dfrac{4b²-4ac×A²}{a²×4B-4AC}

\tt \dfrac{a²}{A² }=\dfrac{ 4b²-4ac}{4B-4AC}

\boxed{\tt \dfrac{a²}{A²}= \dfrac{4(b²-4ac)}{4(B-AC)}}

cancel the 4.

so, option 2 that is a²/A² is correct

Answered by ᎪɓhᎥⲊhҽᏦ
16

Questions:-

If α , β are the roots of ax² + 2bx + c = 0 and α + δ , β + δ are the roots of Ax² + 2Bx + C = 0 , then

\large\rm{\frac{b^2-ac}{B^2-AC}} is

Solution:-

 \rm \: a {x}^{2}  + 2bx + c = 0 \: having \: roots \:  \alpha \:   and \:  \beta

 \rm \:  \alpha  +  \beta  =   - \dfrac{2b}{a}  \:  \alpha  \beta  =  \dfrac{c}{a}

We know

\rm { (\alpha  -  \beta )}^{2}  =  {( \alpha  +  \beta )}^{2}  - 4 \alpha  \beta  \\

put the values, we get

 \rm \implies \:  { (\alpha  -  \beta )}^{2}  =  -  {( \dfrac{2b}{a} )}^{2}  - 4 \times  \dfrac{c}{a}

 \implies \rm { (\alpha  -  \beta )}^{2}  =  \dfrac{ {4b}^{2} }{ {a}^{2} }  -  \dfrac{4c}{a}

\rm =\dfrac{4}{a}(\dfrac{ {b}^{2} }{a}  - c) =\dfrac{4}{a} \dfrac{ {b}^{2} - ac }{a} =\dfrac{4}{ {a}^{2} }({b}^{2}- ac)

α + δ , β + δ are the roots of Ax² + 2Bx + C = 0

  \rm\alpha  + \delta \:  +  \beta  +  \delta =  \dfrac{2B}{ A}

 \rm( \alpha  +  \delta)( \beta  +  \delta) =  \dfrac{C}{A}  \\

  \rightarrow\rm { [(\alpha  +  \delta) - ( \beta  +  \delta) ]  }^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \ \\ = \rm  { [(\alpha  +  \delta)  +  ( \beta  +  \delta) ]  }^{2} - 4(\alpha  +  \delta)  +  ( \beta  +  \delta)  \\

 \rm { (\alpha  -  \beta )}^{2}  =  { (\dfrac{2B}{A}) }^{2}  - 4 \dfrac{C}{A}

  \rm=  \dfrac{4 {B}^{2} }{ {A}^{2} }  -   \dfrac{4C}{A}  =  \dfrac{4}{ {A}^{2} }( {B}^{2}   - AC)

 \rightarrow\rm  \frac{\dfrac{4}{ {a}^{2} }({b}^{2}- ac)}{ \dfrac{4}{ {A}^{2} }( {B}^{2}   - AC)}  = 1

 \implies\rm  \ \: \dfrac{ \cancel4}{ {a}^{2} }({b}^{2}- ac) \times   \dfrac{ {A}^{2} }{ \cancel4 ({B}^{2} -AC  )}  = 1

  \implies \rm\dfrac{ {b}^{2}  - ac}{ {B}^{2}  -AC }  =  \dfrac{ {a}^{2} }{ {A}^{2} }  =  {  \bigg(\dfrac{a}{A} \bigg )}^{2}  \\

2] \large\rm{\dfrac{a^2}{A^2}} \: is \: the \: correct \: answer.

Similar questions