Math, asked by ΙΙïƚȥΑαɾყαɳΙΙ, 16 hours ago

\huge \dag \sf{No \: spamming}

Attachments:

Answers

Answered by OoAryanKingoO78
2

Answer:

{\boxed{\boxed{\begin{array}{cc}\bf \: \to \:given :  \\  \\  \displaystyle \int \rm \:  \frac{ {e}^{ \sqrt{x} } }{ \sqrt{x} }  \:  \: dx \\  \\ \orange{{\boxed{\begin{array}{cc}\bf \: substitute \:  \: u =  \sqrt{x}   \\ \\  \rm \implies \:  \frac{du}{dx}  =  \frac{d}{dx}. \sqrt{x}   =  \frac{1}{2 \sqrt{x} }  \\  \\  \therefore \rm \: dx = 2 \sqrt{x}. \: du \end{array}}}} \\  \\  \rm =\displaystyle \int \rm \:   \frac{ {e}^{u} }{u} .2 \sqrt{x}  \:  \: du \\  \\  \rm = 2\displaystyle \int \rm \:  \frac{ {e}^{u}}{ \cancel{u}}  . \cancel{u }\:  \:  \: du  \\  \\  \rm = 2\displaystyle \int \rm \:  {e}^{u}  \: du \\  \\  \rm \:  = 2 {e}^{u}  + c \\  \\  \orange{ \sf \: undo \: our \: substitution} \\  \\  \rm = 2 {e}^{ \sqrt{x} } + c \\  \\  \\   \blue{ \boxed{\therefore \displaystyle \int \rm \:  \frac{ {e}^{ \sqrt{x} } }{ \sqrt{x} } \: dx = 2 {e}^{ \sqrt{x} }    + c}} \\  \\  \sf \: c = integral \: constant\end{array}}}}

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

Answered by Itzintellectual
1

Step-by-step explanation:

Answer:

\begin{gathered}{\boxed{\boxed{\begin{array}{cc}\bf \: \to \:given : \\ \\ \displaystyle \int \rm \: \frac{ {e}^{ \sqrt{x} } }{ \sqrt{x} } \: \: dx \\ \\ \orange{{\boxed{\begin{array}{cc}\bf \: substitute \: \: u = \sqrt{x} \\ \\ \rm \implies \: \frac{du}{dx} = \frac{d}{dx}. \sqrt{x} = \frac{1}{2 \sqrt{x} } \\ \\ \therefore \rm \: dx = 2 \sqrt{x}. \: du \end{array}}}} \\ \\ \rm =\displaystyle \int \rm \: \frac{ {e}^{u} }{u} .2 \sqrt{x} \: \: du \\ \\ \rm = 2\displaystyle \int \rm \: \frac{ {e}^{u}}{ \cancel{u}} . \cancel{u }\: \: \: du \\ \\ \rm = 2\displaystyle \int \rm \: {e}^{u} \: du \\ \\ \rm \: = 2 {e}^{u} + c \\ \\ \orange{ \sf \: undo \: our \: substitution} \\ \\ \rm = 2 {e}^{ \sqrt{x} } + c \\ \\ \\ \blue{ \boxed{\therefore \displaystyle \int \rm \: \frac{ {e}^{ \sqrt{x} } }{ \sqrt{x} } \: dx = 2 {e}^{ \sqrt{x} } + c}} \\ \\ \sf \: c = integral \: constant\end{array}}}}\end{gathered}

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

Similar questions