Physics, asked by Anonymous, 2 months ago

 \huge\dag \underline{ \boxed{\rm{ \purple{գυєѕτíοи}}}} \dag

ᴅᴇғɪɴᴇ ᴘᴏᴛᴇɴᴛɪᴀʟ ᴅᴜᴇ ᴛᴏ ᴅɪᴘᴏʟᴇ ?
ᴀɴᴅ ᴅᴇʀɪᴠᴇ ᴀɴ ᴇxᴘʀᴇssɪɪɴ ғᴏʀ ɪᴛ ᴀʟsᴏ ?​

Answers

Answered by ғɪɴɴвαłσℜ
10

\huge\bf\pink{\mid{\overline{\underline{Answer :- }}}\mid}

➝ The amount of work done against the electrostatic force to move a unit positive charge from one point to another is known a potential due to electric dipole.

Derivation :-

Potential at +q {V(+q)} =  \frac{1}{4\pi\:Eo}  \frac{ + q}{(r - a)}

Potential at -q {V(-q)} =  \frac{1}{4\pi\:Eo}  \frac{ - q}{(r + a)}

Vp = V+q + V-q ( Total V )

➝ V =  \frac{1}{4\pi\:Eo}  \frac{ + q}{(r - a)} +

 \frac{1}{4\pi\:Eo}  \frac{ - q}{(r + a)}

➝ V =  \frac{1}{4\pi \: Eo}  \times ( \frac{q}{(r - a)} +  \frac{( - q)}{(r + a)}  )

➝ V =  \frac{q}{4\pi \:Eo } ( \frac{1}{(r - a)}  -  \frac{1}{(r + a)} )

➝ V =  \frac{q}{4\pi \: Eo} ( \frac{(r + a) - (r - a)}{(r - a)(r + a)} )

➝ V =   \frac{q}{4\pi \:Eo } ( \frac{r + a - r + a}{(r - a)(r + a)} )

➝ V =  \frac{q}{4\pi \:Eo }  \frac{2a}{(  {r}^{2} -  {a}^{2}  )}

We know that,

| p = 2aq |

So,

➝ V =  \frac{1}{4\pi \:Eo }  \frac{p}{( {r}^{2}   - {a}^{2} )}

r² - a² ≈ r²

Where, short dipole

Where, short dipole a² ➝ 0 , w.r.t r , [ r >> a ]

Hence, V =  \dfrac{1}{4\pi \:Eo }  \dfrac{p}{ {r}^{2} }

_______________________________________

Answered by misspgl6624
2

may this answer helps you ....=_=

Attachments:
Similar questions