Math, asked by sajan6491, 4 days ago

 \huge \displaystyle  \sf\int \limits_{  \sqrt[3]{2}  }^{ \infty }  \frac{1}{x \sqrt{ {x}^{3}  - 1} }  \: dx

Answers

Answered by IamIronMan0
65

Answer:

 \huge \red{ \frac{\pi}{6} }

Step-by-step explanation:

\displaystyle \sf\int \limits_{ \sqrt[3]{2} }^{ \infty } \frac{1}{x \sqrt{ {x}^{3} - 1} } \: dx \\  \\ =   \displaystyle \sf\int \limits_{ \sqrt[3]{2} }^{ \infty } \frac{ {x}^{2} }{x  {}^{3} \sqrt{ {x}^{3} - 1} } \: dx\\  \\ put \:  {x}^{3}  - 1 = y \implies \: 3 {x}^{2} dx = dy \\  \\ \displaystyle \sf\int \limits_{ 1}^{ \infty } \frac{1}{3(1 + y) \sqrt{ y} } \: dy \\  \\ put \: y =  \tan {}^{2} ( \theta)   \implies \:   dy = 2 \tan( \theta) \sec {}^{2} ( \theta) d\theta \\  \\  \displaystyle \sf\int \limits_{  \frac{\pi}{4} }^{  \frac{\pi}{2} } \frac{ 2 \tan( \theta) \sec {}^{2} ( \theta)}{ 3(1 + \tan {}^{2} ( \theta) ) \sqrt{ \tan {}^{2} ( \theta) }  }d \theta  \\  \\ \displaystyle \sf\int \limits_{  \frac{\pi}{4} }^{  \frac{\pi}{2} } \frac{ 2 \tan( \theta) \sec {}^{2} ( \theta)}{3\tan( \theta) \sec {}^{2}( \theta)}d \theta \\  \\  =  \frac{2}{3}   \bigg[ \theta \bigg] _{ \frac{\pi}{4} } ^{ \frac{\pi}{2} }   \\  \\   =  \frac{2}{3} ( \frac{\pi}{2}  -  { \frac{\pi}{4} }) \\  \\  =  \frac{2}{3}  \times  \frac{\pi}{4}  =  \frac{\pi}{6}


BrainlyIAS: Awesome! ❣️
Answered by MichWorldCutiestGirl
97

\large\underline{\underline{\text{Question:}}} \\

  • \sf\int \limits_{ \sqrt[3]{2} }^{ \infty } \frac{1}{x \sqrt{ {x}^{3} - 1} } \: dx \\  \\

\large\underline{\underline{\text{Solution:}}} \\

 \longrightarrow I =  \int \limits_{ \sqrt[3]{2} }^{ \infty } \frac{1}{x \sqrt{ {x}^{3} - 1} } \: dx \\

 \longrightarrow I =  \int \limits_{ \sqrt[3]{2} }^{ \infty }  \frac{1}{x} \times \frac{1}{ \sqrt{ {x}^{3} - 1} } \: dx \\

Multiple numerator and denominator by x²,

 \longrightarrow I =  \int \limits_{ \sqrt[3]{2} }^{ \infty }   \frac{ {x}^{2} }{ {x}^{2} } \times  \frac{1}{x} \times \frac{1}{ \sqrt{ {x}^{3} - 1} } \: dx \\

 \longrightarrow I =  \int \limits_{ \sqrt[3]{2} }^{ \infty }   \frac{ {x}^{2} }{ {x}^{3} } \times \frac{1}{ \sqrt{ {x}^{3} - 1} } \: dx \\

 \longrightarrow I =  \int \limits_{ \sqrt[3]{2} }^{ \infty }   \frac{ {x}^{2} }{3 {x}^{3} } \times \frac{1}{ \sqrt{ {x}^{3} - 1} } \: dx \\

Let's,

  •  {x}^{3}  - 1 = y

So,

  •  {x}^{3}  = y + 1

 \longrightarrow I =  \int \limits_{ \sqrt[3]{2} }^{ \infty }   \frac{ {x}^{2} }{3(y + 1)} \times \frac{1}{ \sqrt{y} } \: dx \\

 \longrightarrow I =  \int \limits_{ 1}^{ \infty }   \frac{1}{ 3(y + 1)\sqrt{y} } \: dy \\

Let's,

  • y =  \tan^{2} ( \theta)  \\

So,

 \longrightarrow I =  \int \limits_{ 1 }^{ \infty }   \frac{2 \tan( \theta) { \sec }^{2}( \theta) }{ 3( \tan^{2} ( \theta)  + 1)\sqrt{ {\tan}^{2} (  \theta)} } \: d \theta \\

As we know that,

  •  \tan( \frac{\pi}{4} )  = 1 \\
  •  \tan( \frac{\pi}{2} )  =  \infty \\

 \longrightarrow I =  \int \limits_{ \frac{\pi}{4}  }^{ \frac{\pi}{2}  }   \frac{2 \tan ( \theta) { \sec }^{2}( \theta) }{ 3( \tan^{2} ( \theta)  + 1)\sqrt{ \tan  ^{2} (  \theta)} } \: d \theta \\

 \longrightarrow I =  \int \limits_{ \frac{\pi}{4}  }^{ \frac{\pi}{2}  }   \frac{2 \tan ( \theta) { \sec }^{2}( \theta) }{ 3 \sec^{2} ( \theta) \tan( \theta)  } \: d \theta  \:  \:  \:  \:  \:  \:  \:  \:  [1 +  {\tan}^{2} ( \theta)  =  \sec ^{2}( \theta) ]\\

 \longrightarrow I =  \frac{2}{3} \bigg( \theta \bigg)_  { \frac{\pi}{4} }^{ \frac{\pi}{2} }   \\

 \longrightarrow I =  \frac{2}{3} \bigg(  \frac{\pi}{2}   -  \frac{\pi}{4} \bigg)  \\

 \longrightarrow I =  \frac{2}{3} \bigg(  \frac{2\pi - \pi}{4}  \bigg)  \\

 \longrightarrow I =  \frac{2}{3} \bigg(  \frac{\pi}{4}  \bigg)  \\

 \longrightarrow I  =  \frac{\pi}{6}   \\    \\

\large\underline{\underline{\text{Final Answer:}}} \\

  •  \longrightarrow   \boxed {\int \limits_{ \sqrt[3]{2} }^{ \infty } \frac{1}{x \sqrt{ {x}^{3} - 1} } \: dx =  \frac{\pi}{6}  }\\

❥Hope you get your AnSwEr.


BrainlyPopularman: Perfect
Similar questions