Or
Spam answers will be reported
Answers
_______________________________________
Take log both sides, we get
Put value of limits,
_______________________________________
Answer:
Assume
x→∞
lim
(
x
x!
)
x
1
=L
Take log both sides, we get
\sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( \dfrac{x!}{x} \right )}ln(L)=
x→∞
lim
(
x
1
)ln(
x
x!
)
\sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( \dfrac{x(x-1)!}{x} \right )}ln(L)=
x→∞
lim
(
x
1
)ln(
x
x(x−1)!
)
\sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( (x-1)! \right )}ln(L)=
x→∞
lim
(
x
1
)ln((x−1)!)
\sf {ln(L)=\displaystyle \lim_{x\to\infty} \dfrac{ln \left ( (x-1)! \right )}{x}}ln(L)=
x→∞
lim
x
ln((x−1)!)
\sf {ln(L)=\displaystyle \lim_{x\to\infty} (x-1)\dfrac{ln \left ( (x-1)! \right )}{x(x-1)}}ln(L)=
x→∞
lim
(x−1)
x(x−1)
ln((x−1)!)
\sf {\displaystyle \lim_{x\to\infty} \dfrac{ln \left ( x! \right )}{x}=\infty}
x→∞
lim
x
ln(x!)
=∞
\sf {ln(L)=(\infty) \displaystyle \lim_{x\to\infty} \dfrac{x-1}{x}}ln(L)=(∞)
x→∞
lim
x
x−1
\sf {ln(L)=(\infty) \displaystyle \lim_{x\to\infty} \left(1-\dfrac{1}{x}\right)}ln(L)=(∞)
x→∞
lim
(1−
x
1
)
Put value of limits,
\sf {ln(L)=(\infty) \left(1-\dfrac{1}{\infty}\right)}ln(L)=(∞)(1−
∞
1
)
\sf {ln(L)=(\infty) \left(1-0\right)}ln(L)=(∞)(1−0)
\sf {ln(L)=\infty}ln(L)=∞
\sf{L=e^{\infty}}L=e
∞
\sf{L=\infty}L=∞