Math, asked by Anonymous, 1 month ago

\huge \displaystyle\sf\lim\limits_{x\to\infty}\sqrt[x]{\dfrac{x!}{x^{x}}}Or\displaystyle\sf\lim\limits_{x\to\infty}\left(\dfrac{x!}{x}\right)^{\left(\dfrac{1}{x}\right)}​​


Spam answers will be reported

Answers

Answered by IIMASTERII
6

\Huge{\texttt{{{\color{Magenta}{⛄A}}{\red{N}}{\purple{S}}{\pink{W}}{\blue{E}}{\green{R}}{\red{♡}}{\purple{࿐⛄}}{\color{pink}{:}}}}}

_______________________________________

 \sf {Assume\:\:\displaystyle \lim_{x\to\infty}\left ( \dfrac{x!}{x} \right )^{\dfrac{1}{x}} = L}

Take log both sides, we get

 \sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( \dfrac{x!}{x} \right )}

 \pmb{\sf{\gray{ Put\ value\ of\ x! }}}

 \sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( \dfrac{x(x-1)!}{x} \right )}

 \sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( (x-1)! \right )}

 \sf {ln(L)=\displaystyle \lim_{x\to\infty} \dfrac{ln \left ( (x-1)! \right )}{x}}

\pmb{\tt{Multiplying \ with\ ( x - 1 )\ in\ numerator\ and\ denominator\, we\ get\ }}

\sf {ln(L)=\displaystyle \lim_{x\to\infty} (x-1)\dfrac{ln \left ( (x-1)! \right )}{x(x-1)}}

 \pmb{\sf{We\ know\ that}}

 \sf {\displaystyle \lim_{x\to\infty} \dfrac{ln \left ( x! \right )}{x}=\infty}

 \sf {ln(L)=(\infty) \displaystyle \lim_{x\to\infty} \dfrac{x-1}{x}}

 \sf {ln(L)=(\infty) \displaystyle \lim_{x\to\infty} \left(1-\dfrac{1}{x}\right)}

Put value of limits,

 \sf {ln(L)=(\infty) \left(1-\dfrac{1}{\infty}\right)}

 \sf {ln(L)=(\infty) \left(1-0\right)}

 \sf {ln(L)=\infty}

 \sf{L=e^{\infty}}

 \sf{L=\infty}

_______________________________________

\huge\red{\boxed{\orange{\mathcal{{{\fcolorbox{red}{i}{{\red{@Master}}}}}}}}}

Answered by PoisonousWitch
2

Answer:

Assume

x→∞

lim

(

x

x!

)

x

1

=L

Take log both sides, we get

\sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( \dfrac{x!}{x} \right )}ln(L)=

x→∞

lim

(

x

1

)ln(

x

x!

)

\sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( \dfrac{x(x-1)!}{x} \right )}ln(L)=

x→∞

lim

(

x

1

)ln(

x

x(x−1)!

)

\sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( (x-1)! \right )}ln(L)=

x→∞

lim

(

x

1

)ln((x−1)!)

\sf {ln(L)=\displaystyle \lim_{x\to\infty} \dfrac{ln \left ( (x-1)! \right )}{x}}ln(L)=

x→∞

lim

x

ln((x−1)!)

\sf {ln(L)=\displaystyle \lim_{x\to\infty} (x-1)\dfrac{ln \left ( (x-1)! \right )}{x(x-1)}}ln(L)=

x→∞

lim

(x−1)

x(x−1)

ln((x−1)!)

\sf {\displaystyle \lim_{x\to\infty} \dfrac{ln \left ( x! \right )}{x}=\infty}

x→∞

lim

x

ln(x!)

=∞

\sf {ln(L)=(\infty) \displaystyle \lim_{x\to\infty} \dfrac{x-1}{x}}ln(L)=(∞)

x→∞

lim

x

x−1

\sf {ln(L)=(\infty) \displaystyle \lim_{x\to\infty} \left(1-\dfrac{1}{x}\right)}ln(L)=(∞)

x→∞

lim

(1−

x

1

)

Put value of limits,

\sf {ln(L)=(\infty) \left(1-\dfrac{1}{\infty}\right)}ln(L)=(∞)(1−

1

)

\sf {ln(L)=(\infty) \left(1-0\right)}ln(L)=(∞)(1−0)

\sf {ln(L)=\infty}ln(L)=∞

\sf{L=e^{\infty}}L=e

\sf{L=\infty}L=∞

Similar questions