Computer Science, asked by BrainlyPARCHO, 5 hours ago

\huge \displaystyle\sf x = 3+2\sqrt{2}


\huge \displaystyle\sf \sqrt{x}-\dfrac{1}{\sqrt{x}} = ¿?

Answers

Answered by OoINTROVERToO
2

 \displaystyle\sf x = 3+2\sqrt{2}

 \displaystyle\sf \sqrt{x}-\dfrac{1}{\sqrt{x}}

━━━━━━━━

 \begin{gathered}\displaystyle\sf :\implies \dfrac{1}{x} = \dfrac{1}{3+2\sqrt{2}}\\\end{gathered}

 \displaystyle\sf :\implies \dfrac{1}{3+2\sqrt{2}}\times \dfrac{3-2\sqrt{2}}{3-2\sqrt{2}}

 \displaystyle\sf :\implies \dfrac{3-2\sqrt{2}}{3^2-(2\sqrt{2}^2)}

 \displaystyle\sf :\implies \dfrac{3-2\sqrt{2}}{9-8}

 \displaystyle\sf :\implies \dfrac{1}{x} = 3-2\sqrt{2}

__________________

 \displaystyle\sf :\implies x+\dfrac{1}{x} = (3+2\sqrt{2}) + (3-2\sqrt{2})

 \displaystyle\sf :\implies x+\dfrac{1}{x} = 3+2\sqrt{2} + 3 - 2\sqrt{2}

 \displaystyle\sf :\implies x+\dfrac{1}{x}

So here we know that we may split the number 6 into 4+2 and 4+2 = 6

 \displaystyle\sf :\implies x+\dfrac{1}{x} = 4

 \displaystyle\sf :\implies x+\dfrac{1}{x}-2 = 4

 \displaystyle\sf :\implies \bigg\lgroup \sqrt{x}-\dfrac{1}{\sqrt{x}}\bigg\rgroup^2 = 4

 \displaystyle\sf :\implies \sqrt{x}-\dfrac{1}{\sqrt{x}} = \sqrt{4}

 \displaystyle\sf :\implies \sqrt{x}-\dfrac{1}{\sqrt{x}} = \pm 2

 \displaystyle\therefore\:\underline{\textsf{The value of $ \sqrt{ \sf x}-\dfrac{\sf 1}{\sqrt{\sf x}}$ is \textbf{$\pm$2 }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by Anonymous
1

Answer:

Answer:

\huge\bf\underline \red{\underline{Answer}}

 \displaystyle\sf x = 3+2\sqrt{2}

 \displaystyle\sf \sqrt{x}-\dfrac{1}{\sqrt{x}}

━━━━━━━━

 \begin{gathered}\displaystyle\sf :\implies \dfrac{1}{x} = \dfrac{1}{3+2\sqrt{2}}\\\end{gathered}

 \displaystyle\sf :\implies \dfrac{1}{3+2\sqrt{2}}\times \dfrac{3-2\sqrt{2}}{3-2\sqrt{2}}

 \displaystyle\sf :\implies \dfrac{3-2\sqrt{2}}{3^2-(2\sqrt{2}^2)}

 \displaystyle\sf :\implies \dfrac{3-2\sqrt{2}}{9-8}

 \displaystyle\sf :\implies \dfrac{1}{x} = 3-2\sqrt{2}

__________________

 \displaystyle\sf :\implies x+\dfrac{1}{x} = (3+2\sqrt{2}) + (3-2\sqrt{2})

 \displaystyle\sf :\implies x+\dfrac{1}{x} = 3+2\sqrt{2} + 3 - 2\sqrt{2}

 \displaystyle\sf :\implies x+\dfrac{1}{x}

So here we know that we may split the number 6 into 4+2 and 4+2 = 6

 \displaystyle\sf :\implies x+\dfrac{1}{x} = 4

 \displaystyle\sf :\implies x+\dfrac{1}{x}-2 = 4

 \displaystyle\sf :\implies \bigg\lgroup \sqrt{x}-\dfrac{1}{\sqrt{x}}\bigg\rgroup^2 = 4

 \displaystyle\sf :\implies \sqrt{x}-\dfrac{1}{\sqrt{x}} = \sqrt{4}

 \displaystyle\sf :\implies \sqrt{x}-\dfrac{1}{\sqrt{x}} = \pm 2

 \displaystyle\therefore\:\boxed{\textsf{The value of $ \sqrt{ \sf x}-\dfrac{\sf 1}{\sqrt{\sf x}}$ is \textbf{$\pm$2 }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions
French, 5 hours ago
Math, 5 hours ago