Math, asked by shashankhc58, 5 hours ago


\huge\fbox\colorbox{beige}{❥Question♬}
Prove that
ta {n}^{ - 1}(  \frac{ \sqrt{1 + x}  -  \sqrt{1 - x} }{ \sqrt{1 + x}  +  \sqrt{1 - x} } ) =  \frac{\pi}{4}  \:  \\  -  \frac { 1}{2}  \:  \: co {s}^{ - 1} x \:  -  \frac{1}{ \sqrt{2} }  \leqslant x \leqslant 1
❌No spams fellas❌​

Answers

Answered by Shreyanshijaiswal81
1

Answer:-

 \tan^{ - 1}  ( \frac{ \sqrt{(1 + x - } \sqrt{1 - x) \times 2}  }{2} ) \\  =  \frac{ -  \cos ^{ - 1}(x)  }{2}  \\  =    \frac{ \sqrt{2} }{2}  \leqslant x \leqslant 1

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Consider, LHS

\rm :\longmapsto\: {tan}^{ - 1}\bigg( \dfrac{ \sqrt{1 + x} - \sqrt{1 - x} }{ \sqrt{1 + x} + \sqrt{1 - x} } \bigg)

To evaluate, this we use method of Substitution

So, Substitute

 \red{\rm :\longmapsto\:x = cos2y}

\rm\implies \:\boxed{\tt{ y =  \frac{1}{2} {cos}^{ - 1}x}}

So, above expression can be rewritten as

 \rm \:  =  \: {tan}^{ - 1}\bigg( \dfrac{ \sqrt{1 + cos2y} - \sqrt{1 - cos2y} }{ \sqrt{1 + cos2y} + \sqrt{1 - cos2y} } \bigg)

We know,

\boxed{\tt{ 1 + cos2x =  {2cos}^{2}x}}  \: \: and \:  \: \boxed{\tt{ 1 - cos2x =  {2sin}^{2}x}}

So, using these, we get

 \rm \:  =  \:  {tan}^{ - 1}\bigg(\dfrac{ \sqrt{ {2cos}^{2} y}  -   \sqrt{ {2sin}^{2} y} }{ \sqrt{ {2cos}^{2}y }  +  \sqrt{ {2sin}^{2} y} }\bigg)

 \rm \:  =  \:  {tan}^{ - 1}\bigg(\dfrac{ \sqrt{2}cosy -  \sqrt{2} siny }{ \sqrt{2} cosy +  \sqrt{2}siny } \bigg)

 \rm \:  =  \:  {tan}^{ - 1}\bigg(\dfrac{ cosy - siny }{  cosy +  siny } \bigg)

 \rm \:  =  \:  {tan}^{ - 1}\bigg(\dfrac{ cosy\bigg[1 - \dfrac{siny}{cosy} \bigg]}{  cosy\bigg[1 + \dfrac{siny}{cosy} \bigg] } \bigg)

 \rm \:  =  \:  {tan}^{ - 1}\bigg[\dfrac{1 - tany}{1 + tany} \bigg]

 \rm \:  =  \:  {tan}^{ - 1}\bigg[tan\bigg(\dfrac{\pi}{4} - y\bigg) \bigg]

 \rm \:  =  \: \dfrac{\pi}{4} - y

 \rm \:  =  \: \dfrac{\pi}{4} - \dfrac{1}{2} {cos}^{ - 1}x

Hence,

\boxed{\tt{  {tan}^{ - 1}\bigg( \dfrac{ \sqrt{1 + x} - \sqrt{1 - x} }{ \sqrt{1 + x} + \sqrt{1 - x} } \bigg) = \frac{\pi}{4}   -  \frac{1}{2} {cos}^{ - 1}x}}

Note :-

\rm :\longmapsto\: - \dfrac{1}{ \sqrt{2} }  \leqslant x \leqslant 1

\rm :\longmapsto\: - \dfrac{1}{ \sqrt{2} }  \leqslant cos2y \leqslant 1

\rm :\longmapsto\:0   \leqslant 2y \leqslant \dfrac{3\pi}{4}

\rm :\longmapsto\:0   \leqslant y \leqslant \dfrac{3\pi}{8}

\rm :\longmapsto\:0   \geqslant  - y \geqslant  - \dfrac{3\pi}{8}

\rm :\longmapsto\:\dfrac{\pi}{4}    \geqslant \dfrac{\pi}{4} - y \geqslant  \dfrac{\pi}{4}- \dfrac{3\pi}{8}

\rm :\longmapsto\:\dfrac{\pi}{4}    \geqslant \dfrac{\pi}{4} - y \geqslant   - \dfrac{\pi}{4}

\rm :\longmapsto\: -  \: \dfrac{\pi}{4}     \: \leqslant \dfrac{\pi}{4} - y \:  \leqslant \:  \dfrac{\pi}{4}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore More

\boxed{\tt{  {tan}^{ - 1}x +  {tan}^{ - 1}y =  {tan}^{ - 1}\bigg[\dfrac{x + y}{1 - xy} \bigg]}}

\boxed{\tt{  {tan}^{ - 1}x  -   {tan}^{ - 1}y =  {tan}^{ - 1}\bigg[\dfrac{x  -  y}{1  +  xy} \bigg]}}

\boxed{\tt{  {2tan}^{ - 1}x =  {sin}^{ - 1}\bigg[\dfrac{2x}{1 +  {x}^{2} } \bigg]}}

\boxed{\tt{  {2tan}^{ - 1}x =  {tan}^{ - 1}\bigg[\dfrac{2x}{1 -  {x}^{2} } \bigg]}}

\boxed{\tt{  {2tan}^{ - 1}x =  {cos}^{ - 1}\bigg[\dfrac{1 -  {x}^{2} }{1 +  {x}^{2} } \bigg]}}

Similar questions