Math, asked by mysticaldimples59, 11 months ago

\huge{\fbox{\fbox{\bigstar{\mathfrak{\red{Question}}}}}}
the volume of a cylinder of a height 15 cmis 2310cm3. find it's curved surface area and total surface area​

Answers

Answered by umiko28
1

Answer:

\huge\underline{ \underline{ \red {your \: \: \: answer}}}

TO FIND**==>1)curved surface area.

2)total surface area

 \bf\underline{ here  \: \: h = 15cm}  \\ \\ \bf\underline{ \:  \:  \pi =  \frac{22}{7} }  \\ \\  \bf\underline{r =?} \\  \\   \bf\green{ volume \: of \: cylinder =  \pi {r}^{2}h }\\  \\  \bf\  \implies2310 =  \frac{22}{7} \times  { r}^{2} \times 15 \\  \\    \bf\  \implies {r}^{2}  =  \frac{2310 \times 7}{22 \times 15}  \\  \\  \bf\  \implies  {r}^{2}  =  \frac{1155 \times 7}{11 \times 15}   \\  \\  \bf\  \implies {r}^{2}  =  \frac{105 \times 7}{15}  \\  \\ \bf\  \implies \: r =  \sqrt{49}  \\  \\ \bf\underline{    \bigstar\implies \: r = 7cm \:  \bigstar} \\   \\ \\  \bf\red{\underline{    \mapsto: curved  \: surface \:  area \: of \: cylinder = 2 \pi \: rh }}\\  \\  \bf\ \implies 2 \times  \frac{22}{7} \times 7 \times 15  {cm}^{2} \\  \\    \bf\ \implies 2 \times22 \times 15 {cm}^{2}  \\  \\   \bf\boxed{ \implies 660 {cm}^{2}}  \\  \\  \bf\purple{ \underline{ \underline \hookrightarrow :  total  \: surface \:  are \: of \: cylinder = 2 \pi \: r \:h  + 2 \pi \:  {r}^{2} }} \\  \\  \bf\ \implies 2 \pi \: r(h + r) \\  \\ \bf\ \implies 2 \times  \frac{22}{7}  \times 7(15 + 7) {cm}^{2}  \\  \\ \bf\ \implies 2 \times 22 \times 22  \: {cm}^{2}  \\  \\ \bf\boxed{ \implies 968  \: {cm}^{2} } \\  \\ \large\boxed{ \fcolorbox{orange}{yellow}{hope \: it \: help \: you}}

Answered by DeviIQueen
0

Answer:

A≈967.87cm²

h Height

15

cm

V Volume

2310

cm³

Using the formulas

A=2πrh+2πr2

V=πr2h

Solving forA

A=2hπV

h+2V

h=2·15·π·2310

15+2·2310

15≈967.86722cm²

Similar questions