Math, asked by NewBornTigerYT, 10 months ago

\huge{\fbox{\fbox{\white{\mathfrak{Question\:Above}}}}}
<body bgcolor= "black"><font color="yellow">
\huge\purple{\underbrace{\overbrace{\ulcorner{\mid{\overline{\underline{Explanation\:Required}}}}}}}
➡️Please answer, if you if felt this easy then definitely ☑ check out my profile and kindly answer my questions​

Attachments:

Answers

Answered by Anonymous
13

Question :

If ( 1 / p ) - ( 1 / q ) - ( 1 / q ) = 1 / 36 and pq + qr = pr, then find the value of r.

Solution :

Given :

 \implies  \sf \dfrac{1}{p}  -  \dfrac{1}{q}  -  \dfrac{1}{r}  =  \dfrac{1}{36}

Taking LCM

 \implies  \sf \dfrac{ qr - pr - pq }{pqr}  =  \dfrac{1}{36}

Substituting pr = pq + qr

 \implies  \sf \dfrac{ qr - (pq + qr) - pq }{pqr}  =  \dfrac{1}{36}

 \implies  \sf \dfrac{ qr - pq  -  qr- pq }{pqr}  =  \dfrac{1}{36}

 \implies  \sf \dfrac{  - pq - pq }{pqr}  =  \dfrac{1}{36}

 \implies  \sf  - \dfrac{2pq }{pqr}  =  \dfrac{1}{36}

 \implies  \sf  - \dfrac{2}{r}  =  \dfrac{1}{36}

 \implies  \sf  -2 \times 36  =r

 \implies  \sf  r =  - 72

Therefore the value of r is - 72.

Answered by Equestriadash
25

\bf Given:\ \sf \dfrac{1}{p}\ -\ \dfrac{1}{q}\ -\ \dfrac{1}{r}\ =\ \dfrac{1}{36};\ pq\ +\ qr\ =\ pr.\\\\\\\bf To\ find:\ \sf The\ value\ of\ r.\\\\\\\bf Answer:

\sf \dfrac{1}{p}\ -\ \dfrac{1}{q}\ -\ \dfrac{1}{r}\ =\ \dfrac{1}{36}\\\\\\\bf Taking\ its\ LCM\ and\ solving,\\\\\\\sf \dfrac{qr\ -\ pr\ -\ pq}{pqr}\ =\ \dfrac{1}{36}\\\\\\\bf \Big[pr\ =\ pq\ +\ qr\Big]\\\\\\\sf \dfrac{qr\ -\ (pq\ +\ qr)\ -\ pq}{pqr}\ =\ \dfrac{1}{36}\\\\\\\dfrac{qr\ -\ pq\ -\ qr\ -\ pq}{pqr}\ =\ \dfrac{1}{36}\\\\\\\dfrac{-2pq}{pqr}\ =\ \dfrac{1}{36}\\\\\\\dfrac{-2}{r}\ =\ \dfrac{1}{36}\\\\\\-72\ =\ r

Therefore, r = - 72.

Similar questions