Math, asked by SɳσɯDɾσρ, 13 hours ago

 \huge\fbox\pink{Answer : }

The length of a side of a square field is 4 m. What will be the altitude of the rhombus, if the area of the rhombus is equal to the square field and one of its diagonal is 2 m?

don't spam ✖​

Answers

Answered by MystícPhoeníx
34

Answer:

  • 16/65 cm is the required altitude of Rhombus

Step-by-step explanation:

According to the Question

It is given that,

  • Length of a side of square field is 4m.
  • Area of Rhombus = Area of Square
  • Diagonal ,d = 2m

We have to find the length of altitude of the rhombus.

Since it is given Area of Square is equal to Area of Rhombus .

  • Area of Square = Area of Rhombus

On substituting the value we get

↠ 4 × 4 = ½ × 2 × d'

↠ 16 = d'

Length of another diagonal of Rhombus is 16cm .

Now, calculating the side of Rhombus

  • Side of Rhombus = ½ d²+d'²

On substituting the value we get

↠ Side of Rhombus = ½ √2²+16²

↠ Side of Rhombus = ½ √4+256

↠ Side of Rhombus = ½ √260

↠ Side of Rhombus = ½ × 2√65

↠ Side of Rhombus = √65 cm

Also,Area of Rhombus is calculated by

  • Area of Rhombus = Side × Altitude

On substituting the value we get

↠ 16 = √65 × Altitude

↠ 16/√65 = Altitude

↠ Altitude = 16/√65 cm

  • Hence, the altitude of rhombus is 16/65
Answered by xxblackqueenxx37
52

Concept

Your question is based on the concept of Area and Perimeter firstly let's understand your question so in your question it is given that The length of a side of a square field is 4 m. and now they are asking us to find out the altitude of the rhombus , if the area of the rhombus is equal to the square field and one of its diagonal is 2 m

let's proceed calculation!!

 \underline{ \rule{190pt}{2pt}}

Formula Used

 \sf \color{pink}{Area \:  of \:  Rhombus =  Area  \: of  \: square }

  \sf \color{pink} \: Altitude \:  =  \frac{area \: of \: rhombus}{side}

\underline{ \rule{190pt}{2pt}}

Solution

 \sf \rightarrow \:Area \:  of \:  Rhombus = Area  \: of  \: square

 \sf \rightarrow \: (4 {)}^{2} \: cm

 \sf \rightarrow \: 16 \: sq.cm

 \sf \rightarrow \: Area \:  of \:  Rhombus =  \frac{1}{2}  \times d _{1} \times d _{2} \\

 \sf \rightarrow \: 16 \: sq.cm  =  \frac{1}{2} \times   2cm \times d _{2} \\

 \sf \rightarrow \: d _{2} = 16cm

We know that Area of Rhombus = side × attitude

 \sf \rightarrow \: of \: side =  \frac{1}{2}  \sqrt{ {d}^{2}_{2}   +  {d}^{2}_{2}  }  \\

 \sf \rightarrow \:  \frac{1}{2}  \sqrt{ 4 +256 } \\

 \sf \rightarrow \:  \frac{1}{2}  \sqrt{260}  \\

 \sf \: altitude \:  =  \frac{area \: of \: rhombus}{side}  \\

 \sf \rightarrow \:  \frac{16 \: sq.cm}{ \frac{1}{2}  \sqrt{260m} }  \\

 \sf \rightarrow \:  \frac{16}{ \sqrt{65} } cm \\

 \: \underline{ \rule{190pt}{2pt}}

Answer

 \sf \color{pink} \rightarrow \:  \frac{16}{ \sqrt{65} } cm \\

 \: \underline{ \rule{190pt}{2pt}}

Additional Information

\begin{gathered} \begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \textbf {\textsf \red{ \dag \: \: More \: Formulas \: \: \dag}}}} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Square} = Side \times Side} \\ \\ \\ \footnotesize\bigstar \: \bf{Area \: _{Rectangle} = Lenght \times Breadth} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Triangle} = \frac{1}{2} \times Base \times Height } \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Parallelogram} = Base \times Height} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Trapezium} = \frac{1}{2} \times [ \: A + B \: ] \times Height } \\ \\ \\ \footnotesize \bigstar \: \bf {Area \: _{Rhombus} = \frac{1}{2} \times Diagonal \: 1 \times Diagonal \: 2}\end{array}}\end{gathered}\end{gathered} \end{gathered}

Similar questions