Math, asked by Braɪnlyємρєяσя, 6 months ago

\huge \fbox \red{❥ Question}


If Sin A = 3/4, Calculate cos A and tan A.


✳️gud luck :-P​

Answers

Answered by ItzArchimedes
195

cosA = √7/4 & tanA = 3/√7

If sinA = 3/4 , then it the opposite side of angle A in the right triangle will be 3 & Hypotenuse of the triangle will be 4 . So we should find the adjacent side of angle A .

So , using Pythagoras theorem

Hypotenuse² = Base² + Height²

→ 4² = Base² + 3²

→ 16 - 9 = Base²

Base = 7 = Adjacent

Now ,

cosA = Adjacent/Hypotenuse = 7/4

tanA = opposite/Adjacent = 3/7

Answered by Anonymous
133

{\huge{\rm{\underline{\underline{Question:-}}}}}

→ If Sin A = 3/4, Calculate cos A and tan A

{\huge{\rm{\underline{\underline{Given:-}}}}}

\sf Sin\; A = \dfrac{3}{4}

{\huge{\rm{\underline{\underline{To\;Find:-}}}}}

→  cos A and tan A

{\huge{\rm{\underline{\underline{Solution:-}}}}}

→ As , we're given that

\sf sin\;A = \dfrac{3}{4} \\\\\\\ \rightarrow  \dfrac{BC}{DC} = \dfrac{3}{4} \\\\\\\rightarrow BC = 3k \; and\; AC = 4k\\\\\\\longrightarrow  where\;k\;is\;the\;constant\;of\;proportionality.

→ By Pythagoras theorem :

{\boxed{ \underline{AB^{2}= AC^{2} - BC^{2}}}

→ let's solve !!

\sf \longrightarrow (4k)^{2} - (3k^{2}) = 7k^{2} \\\\\longrightarrow AB = \sqrt{7k} \\\\\\\longrightarrow cos A = \dfrac{AB}{AC} = \dfrac{\sqrt{7k} }{4k} = \dfrac{\sqrt{7} }{4} \\\\\\\longrightarrow tan A = \dfrac{BC}{AB} = \dfrac{3k}{\sqrt{7k}} = \dfrac{3}{\sqrt{7}}

__________

All Done :D !!

Attachments:
Similar questions