Prove that sin theta/1-cos theta + tan theta /1 + cos theta = sec theta * cosec theta + cot theta?
Answers
Answered by
4
Answer:
Sinθ/(1 – cosθ) + Tanθ/(1 + cosθ) = Secθ.Cosecθ + Cotθ
Let us start with LHS
= Sinθ/(1 – cosθ) + Tanθ/(1 + cosθ)
= (sinθ(1 + cosθ) + Tanθ(1-Cosθ))/(1 – Cos²θ)
= (sinθ(1 + cosθ) + (Tanθ – Sinθ)) /Sin²θ
= ( 1 + cosθ + 1/Cosθ – 1)/Sinθ
= (cosθ + 1/Cosθ)/Sinθ
= 1/CosθSinθ + cosθ/Sinθ
= Secθ.Cosecθ + Cotθ
= RHS
Hence Proved
Answered by
452
◗L.H.S. =
◗
◗
◗Rearranging the terms in the numerator.
◗Taking common terms out from numerator and denominator.
◗
◗
= R.H.S.
Hence, proved !!
Similar questions