Math, asked by Braɪnlyємρєяσя, 4 months ago

\huge \fbox \red{❥ Question}
Prove that sin theta/1-cos theta + tan theta /1 + cos theta = sec theta * cosec theta + cot theta?​

Answers

Answered by rapunzel4056
4

Answer:

Sinθ/(1 – cosθ) + Tanθ/(1 + cosθ) = Secθ.Cosecθ + Cotθ

Let us start with LHS

= Sinθ/(1 – cosθ) + Tanθ/(1 + cosθ)

= (sinθ(1 + cosθ) + Tanθ(1-Cosθ))/(1 – Cos²θ)

= (sinθ(1 + cosθ) + (Tanθ – Sinθ)) /Sin²θ

= ( 1 + cosθ + 1/Cosθ – 1)/Sinθ

= (cosθ + 1/Cosθ)/Sinθ

= 1/CosθSinθ + cosθ/Sinθ

= Secθ.Cosecθ + Cotθ

= RHS

Hence Proved

Answered by Anonymous
452

{\bf{To~Prove~:~\sf{\dfrac{sin \theta}{1 - cos \theta}}~ +~ {\dfrac{tan \theta}{1 + cos \theta}} ~= ~cot \theta ~+~ sec \theta cosec \theta}}

~

L.H.S. = {\sf{ \dfrac{sin \theta}{1 - cos \theta} + \dfrac{tan \theta}{1 + cos \theta}}}

~

{\sf:\implies{\sf{ \dfrac{ sin \theta (1 + cos \theta ) + tan \theta (1 - cos \theta )}{(1 + cos \theta)(1 - cos \theta)}}}}

~

  • {\boxed{\sf\purple{Identity \ : \ (a + b)(a - b) = a^2 - b^2}}}

~

{\sf{Here, \ a = 1, \ b = cos \theta}}

~

{\sf:\implies{\dfrac{ sin \theta (1 + cos \theta ) + tan \theta (1 - cos \theta )}{(1)^2 - (cos \theta)^2}}}

{\sf:\implies{\dfrac{ sin \theta (1 + cos \theta ) + tan \theta (1 - cos \theta )}{1 - cos^2 \theta}}}

~

  • {\boxed{\sf\purple{Identity \ : \ sin^2 \theta + cos^2 \theta = 1}}}

~

{\sf{From \ this, \ we \ get \ [ 1 - cos^2 \theta = sin^2 \theta ]}}

~

{\sf:\implies{\dfrac{ sin \theta (1 + cos \theta ) + tan \theta (1 - cos \theta )}{sin^2 \theta}}}

{\sf:\implies{\dfrac{ sin \theta + sin \theta cos \theta + tan \theta - tan \theta cos \theta}{sin^2 \theta}}}

~

  • {\boxed{\sf\pink{Identity \ : \ tan \theta = {\dfrac{sin \theta}{cos \theta}}}}}

~

{\sf:\implies{\dfrac{ sin \theta + sin \theta cos \theta + tan \theta -~sin \theta}{cos \theta} \times cos \theta~sin^2 \theta}}

{\sf:\implies{\dfrac{ sin \theta + sin \theta cos \theta + tan \theta - sin \theta}{sin^2 \theta}}}

~

Rearranging the terms in the numerator.

{\sf:\implies{\dfrac{ sin \theta - sin \theta + sin \theta cos \theta + tan \theta}{sin^2 \theta}}}

{\sf:\implies{\dfrac{sin \theta cos \theta + tan \theta}{sin^2 \theta}}}

~

  • {\boxed{\sf\pink{Identity \ : \ tan \theta = {\dfrac{sin \theta}{cos \theta}}}}}

~

{\sf:\implies{\dfrac{sin \theta cos \theta + sin \theta}{cos \theta ~sin^2 \theta}}}

{\sf:\implies{\dfrac{sin \theta cos \theta (cos \theta) + sin \theta}{cos \theta} sin^2 \theta}}

{\sf:\implies{ \dfrac{sin \theta cos^2 \theta + sin \theta}{cos \theta} sin^2 \theta}}

{\sf:\implies{\dfrac{sin \theta cos^2 \theta + sin \theta }{ (cos \theta)(sin^2 \theta)}}}

{\sf:\implies{\dfrac{sin \theta cos^2 \theta + sin \theta }{cos \theta . sin^2 \theta}}}

~

Taking common terms out from numerator and denominator.

~

{\sf:\implies{{\dfrac{sin \theta (cos^2 \theta + 1) }{sin \theta (cos \theta . sin \theta)}}}}

{\sf:\implies{\dfrac{cos^2 \theta + 1}{cos \theta . sin \theta}}}

~

\underline{\frak{We ~can~ write~ this ~as~ :}}

~

{\sf:\implies{\dfrac{cos^2 \theta}{cos \theta sin \theta}} + {\dfrac{1}{cos \theta sin \theta}}}

{\sf:\implies {\dfrac{cos \theta}{sin \theta}} + {\dfrac{1}{cos \theta sin \theta}}}

~

\underline{\frak{We ~can~ write~ this ~as~ :}}

~

{\sf:\implies {\dfrac{cos \theta}{sin \theta}} + {\dfrac{1}{cos \theta}} \times {\dfrac{1}{sin \theta}}}

~

  • {\boxed{\sf\pink{Identity \ : \ {\dfrac{cos \theta}{sin \theta}} = cot \theta}}}
  • {\boxed{\sf\pink{Identity \ : \ {\dfrac{1}{cos \theta}} = sec \theta}}}
  • {\boxed{\sf\pink{Identity \ : \ {\dfrac{1}{sin \theta}}~ = ~cosec \theta}}}

~

{\sf:\implies{ cot \theta + sec \theta cosec \theta + cot \theta}}= R.H.S.

~

Hence, proved !!

Similar questions