Math, asked by Anonymous, 5 months ago


 \huge {Hola!!}
 \huge \underline{Question :-}



1.Verify whether the points (1,5),(2,3) and (-2,-1)

2.Find the relation between x and y such that point (x,y) is equidistant from the points (7,1)and (3,5).

Kindly Don't spam please

Answer with full explanation

Don't copy ​

Answers

Answered by darksoul3
1

\huge \fbox \red{Answer}

___________________

1. Let the points (1,5), (2,3) and (-2,-1) be represented by A,B and C.

A(1,5), B(2,3), C(-2,-1)

AB =  \sqrt{ {(2 - 1)}^{2} +  {(3 - 5)}^{2}  }

 =  \sqrt{ {(1)}^{2} +  {( - 2)}^{2}  }

 =  \sqrt{1  + 4}

 =  \sqrt{5}

BC =  \sqrt{ {( - 2 - 2)}^{2} +  {( - 1 - 3)}^{2}  }

 =  \sqrt{ {( - 4)}^{2} +  {( - 4)}^{2}  }

 =  \sqrt{16 + 16}

 =  \sqrt{32}

CA =  \sqrt{ {( - 2 - 1)}^{2} +  {( - 1 - 5)}^{2}  }

 =  \sqrt{ { (- 3)}^{2}  +  { (- 6)}^{2} }

 =  \sqrt{9 + 36}

 = \sqrt{45}

As we can see that

AB + BC ≠ CA

Therefore, the point (1,5), (2,3) and (-2,-1) are not collinear.

___________________

2. Let the P(x,y) be equidistant from A(7,1) and B(3,5).

P(x,y), A(7,1) and B(3,5)

Then,

PA = PB

PA² = PB²

↪(7 - x)² + (1 - y)² = (3 - x)² + (5 - y)²

↪x² + y² - 14x - 2y + 50 = x² + y² - 6x - 10y + 34

↪8x - 8y = 16

x - y = 2

_________________

Answered by Anonymous
16

\huge\orange\star~\huge \sf\green  {\boxed{\sf{   \red{Ꭺ{ \pink{ɳ{ \blue{s{ \purple {ฬ{ \orange{є { \red{Ʀ\pink{~ :}}}}}}}}}}}}}}}

Let the points (1,5), (2,3) and (-2,-1) be represented by A,B and C.

A(1,5), B(2,3), C(-2,-1)

 \tt {\red{ \underline{AB = \sqrt{ {(2 - 1)}^{2} + {(3 - 5)}^{2} } }}}

 \:  \:  \:  \:  \:  \implies{ \sf\sqrt{ {(1)}^{2} + {( - 2)}^{2} } }

 \:  \:  \:  \:  \:  \implies \sqrt{1 + 4}

 \:  \:  \:  \:  \:  \implies \sqrt{5}

 \tt \red{ \underline{BC = \sqrt{ {( - 2 - 2)}^{2} + {( - 1 - 3)}^{2} }}}

 \:  \:  \:  \:  \:  \implies \sf{  \sqrt{ {( - 4)}^{2} + {( - 4)}^{2} }}

 \: \:  \:  \:  \:  \implies {\sf \sqrt{16 + 16} }

 \:  \:  \:  \:  \:  \implies \sf \sqrt{32}

{ \sf {\red{ \underline{ \: CA =\sqrt{ {( - 2 - 1)}^{2} + {( - 1 - 5)}^{2} } }}}}

 \:  \:  \:  \:  \:  \implies \sf\sqrt{ { (- 3)}^{2} + { (- 6)}^{2} }

 \:  \:  \:  \:  \:  \implies \sf\sqrt{9 + 36}

 \:  \:  \:  \:  \:  \implies \sf \sqrt{45}

As we can see that

 \boxed{  \blue{\tt{AB + BC ≠ CA}}}

Therefore, the point (1,5), (2,3) and (-2,-1) are not collinear.

~~

\huge\orange\star~\huge \sf\green  {\boxed{\sf{   \red{Ꭺ{ \pink{ɳ{ \blue{s{ \purple {ฬ{ \orange{є { \red{Ʀ\pink{~ :}}}}}}}}}}}}}}}

Let the P(x,y) be equidistant from A(7,1) and B(3,5).

P(x,y), A(7,1) and B(3,5)

Then,

➞ PA = PB

➞ PA² = PB²

➞ (7 - x)² + (1 - y)² = (3 - x)² + (5 - y)²

➞ x² + y² - 14x - 2y + 50 = x² + y² - 6x - 10y + 34

➞ 8x - 8y = 16

 \large \boxed {\pink{ \tt{ x - y = 2}}}

Similar questions