Math, asked by llAksharall7, 24 days ago

\:\:\:\huge\mathbb\colorbox{black}{\color{white}{QuEsTiOn}}

In A OPQ, right-angled at P,
OP = 7 cm and OQ - PQ = 1 cm (see Fig. 8.12).
Determine the values of sin Q and cos Q.​

Answers

Answered by UserUnknown57
5

Answer:

Step-by-step explanation:

\large{\mathtt{OQ-PQ=1 \: cm}}

\large{\mathtt{OQ=1+PQ}}

Using Pythagoras theorem,

\large{\mathtt{(a)^2+(b)^2=(c)^2}}

\large{\mathtt{(OP)^2+(PQ)^2=(OQ)^2}}

\large{\mathtt{(7)^2+(PQ)^2=(1+PQ)^2}}

\large{\mathtt{49+(PQ)^2=(PQ)^2+1+2PQ}}

\large{\mathtt{49+(PQ)^2-(PQ)^2-1-2PQ=0}}

\large{\mathtt{2PQ=48}}

\large{\mathtt{PQ=24}}

\large{\mathtt{OQ=1+PQ}}

\large{\mathtt{OQ=1+24}}

\large{\mathtt{OQ=25}}

\huge{\mathtt{sin(Q)=\frac{7}{25}}}

\huge{\mathtt{cos(Q)=\frac{24}{25}}}

Answered by Snowdrop66
3

\:\:\:\huge\color{pink}\boxed{\colorbox{black}{AnSwEr}}

In Δ OPQ, we have

OQ^2=OP^2+PQ^2

⇒(PQ+1)^2=OP^2+PQ^2 [∵OQ−PQ=1⇒OQ=1+PQ]

⇒PQ^2+2PQ+1=OP^2+PQ^2

⇒2PQ+1=49

⇒PQ=24cm

∴OQ−PQ=1cm

⇒OQ=(PQ+1)cm=25cm

Now, sinQ=OQ/OP=25/7

and, cosQ= OQ/PQ=25/24

Similar questions