Math, asked by Anonymous, 1 month ago

\huge\mathcal{\red{Hola! }}

\huge\underline{\overline{\mid{\bold{\purple{\mathcal{Question:-}}\mid}}}}

\implies The sum of three terms in an A.P. is 21 and their product is 231. Find the numbers.

___________________________________
Kindly:-

\bullet{\leadsto} Do explain properly why to take a, a-d and a+d instead of a, a+d and a+2d.
\bullet{\leadsto} Quality answer required! ​

Answers

Answered by OyeeKanak
86

\huge\underline{\overline{\mid{\bold{\color{maroon}{\mathcal{Question:-}}\mid}}}}

⇒ The sum of three terms in an A.P. is 21 and their product is 231. Find the numbers.

Given:-

  • The sum of 3 numbers in A.P is 21 and the product is 231.

To find:-

  • The 3 numbers

\huge\underline{\overline{\mid{\bold{\purple{\mathrm{Solution:- }}\mid}}}}

  • Let the first term be a, and the common difference be d (as it is an arithmetic progression)

 \underline{ \boxed{ \sf \: Let \:  (a-d),a,(a+d) \:  are  \: 3  \: numbers  \: in \:  A.P}}

 \red➦a - d + a + a + d = 21

 \pink➦3a = 21

 \orange➦a =  \frac{21}{3}

 \purple➦a = 7

  • Therefore the value of a is 7

 \blue \implies \: (a - d)a(a + d) = 231

 \green \implies \: a( {a}^{2}  -  {d}^{2} ) = 231

{ \color{aqua} {\implies}} \: 7(49 -  {d}^{2} ) = 231

  { \color{maroon}{ \implies}}49 -  {d}^{2}  =  \frac{231}{7}

 { \color{gold}{ \implies}}49 -  {d}^{2}  =  33

{ \color{blue}{ \implies}}{d}^{2}  = 49 - 33

{ \color{navy}{ \implies}} {d}^{2}  = 16

 \:  \:  \:  \:  \:  \: { \color{yellow}{ \implies}}d =  \sqrt{16}

 { \color{green}{ \implies}}d = 4

⇰a-d =7-4=3

⇰a+d=7+4=11

⇰a=7

 \boxed{ \underline{ \mathcal{ \green{Therefore  \: the  \: numbers  \: are  \: 3,11,7}}}}

Answered by amansharma264
59

EXPLANATION.

Sum of three terms in an A.P. = 21.

Their products = 231.

As we know that,

Three terms of an A.P. = a - d, a, a + d.

⇒ a - d + a + a + d = 21.

⇒ 3a = 21.

⇒ a = 7.

⇒ (a - d)(a)(a + d) = 231.

As we know that,

Formula of :

⇒ x² - y² = (x + y)(x - y).

Using this formula in equation, we get.

⇒ (a - d)(a + d)(a) = 231.

⇒ (a² - d²)(a) = 231.

Put the value of a = 7 in equation, we get.

⇒ [(7)² - d²](7) = 231.

⇒ [49 - d²](7) = 231.

⇒ 343 - 7d² = 231.

⇒ -7d² = 231 - 343.

⇒ -7d² = -112.

⇒ 7d² = 112.

⇒ d² = 16.

⇒ d = √4.

⇒ d = ± 4.

First term of an A.P. = a = 7.

Common difference = d = b - a = 4.

Three numbers are,

⇒ (a - d), a, (a + d).

⇒ (7 - 4), 7, (7 + 4).

⇒ 3, 7, 11.

First term of an A.P. = a = 7.

Common difference = d = b - a = -4.

Three numbers are,

⇒ (a - d), a, (a + d).

⇒ [7 - (-4)], 7, [7 + (-4)].

⇒ [7 + 4], 7, [7 - 4].

⇒ 11, 7, 3.

                                                                                                                     

MORE INFORMATION.

(1) = Arithmetic progression (A.P.)

If a is the first term and d is the common difference then A.P. can written as,

a + (a + d) + (a + 2d) + ,,,

(2) = General term of an A.P.

General term (nth term) of an A.P. is given by,

Tₙ = a + (n - 1)d.

(3) = Sum of n terms of an A.P.

Sₙ = n/2 [2a + (n - 1)d]  Or  Sₙ = n/2[a + Tₙ].

(1) = If sum of n terms Sₙ is given then general term Tₙ = Sₙ - Sₙ₋₁ Where (Sₙ₋₁) is sum of (n - 1) terms of A.P.

(4) = Arithmetic mean (A.M.)

If A is the A.M. between two given numbers a and b, then

A = a + b/2 ⇒ 2A = a + b.

Similar questions