Math, asked by Mysterioushine, 8 months ago

\huge{\mathcal{\underline{\pink{Question:-}}}}

The equation of two straight lines throught (7,9) and making an angle of 60° with the line x - √3y -2√3 = 0

a] x - 7 = 0

b] \small\rm{(y-9)\:=\:-\frac{1}{\sqrt{3}}\times\:(x-7)}

c] x + 7 = y

d] \small\rm{(y+9)\:=\:\frac{1}{\sqrt{3}}\times\:(x+7)}

[Please solve with clear explanation.This question is telated to Angle between two lines topic. Answers are (a),(b). Copied answers and spammers will be reported]

Answers

Answered by BrainlyPopularman
43

GIVEN :

• Straight lines passing throught (7,9).

• And making an angle of 60° with the line x - √3y -2√3 = 0.

TO FIND :

▪︎ Straight line = ?

SOLUTION :

▪︎ First Let's find the Slope of line x - √3y -2√3 = 0.

  \bf \implies \large{ \boxed{ \bf  \: slope =  \dfrac{ - coffieciant \:  \: of \:  \: x}{coffieciant \:  \: of \:  \: y}}}

  \bf \implies  m_{1} = \dfrac{1}{ \sqrt{3} }

• We know that –

  \bf \implies \large{ \boxed{ \bf  \:  \tan( \theta)  =    \left| \dfrac{m_{2}-  m_{1}}{ 1+m_{1}m_{2}}  \right| }}

• Here –

  \bf \:  \to \:  \:  \theta =  {60}^{ \circ}  \:  \:

  \bf \:  \to \:  \:  m_1 =   \dfrac{ 1}{ \sqrt{3} }  \:  \:

  \bf \:  \to \:  \:  m_2 =slope \:  \: of \:  \: required \:  \: line

• So that –

  \bf \implies  \tan( {60}^{ \circ} )  =    \left| \dfrac{m_{2}- \left(\dfrac{ 1}{ \sqrt{3} } \right) }{ 1+ \left(\dfrac{1}{ \sqrt{3} } \right) m_{2}}  \right|

  \bf \implies  \sqrt{3}  =    \left| \dfrac{m_{2} - \dfrac{ 1}{ \sqrt{3} }  }{ 1 + \dfrac{m_{2}}{ \sqrt{3} } }  \right|

  \bf \implies  \sqrt{3}  =    \left| \dfrac{m_{2}  \sqrt{3} -1}{  \sqrt{3}  + m_{2}}  \right|

  \bf \implies  \sqrt{3}  =  \pm \left( \dfrac{m_{2}  \sqrt{3} -1}{  \sqrt{3}  + m_{2}}  \right)

• Take positive sign –

  \bf \implies  \sqrt{3}  =  \dfrac{m_{2}  \sqrt{3} - 1}{  \sqrt{3}  + m_{2}}

  \bf \implies  \sqrt{3}(  \sqrt{3}  +  m_{2}) =  m_{2}  \sqrt{3} - 1

  \bf \implies  3  +   \sqrt{3} m_{2} =  m_{2}  \sqrt{3} - 1

  \bf \implies 4 =  m_{2} (0)

  \bf \implies {  \boxed{ \bf{m_{2}  =  \infty }}}}

• Take negetive sign –

  \bf \implies   -  \sqrt{3}  =  \dfrac{m_{2}  \sqrt{3} - 1}{  \sqrt{3}  + m_{2}}

  \bf \implies  -  \sqrt{3}(  \sqrt{3}  + m_{2}) =  m_{2}  \sqrt{3} - 1

  \bf \implies  -  3  - \sqrt{3} m_{2} =  m_{2}  \sqrt{3} - 1

  \bf \implies  - 2 = 2 \sqrt{3} m_{2}

  \bf \implies {  \boxed{ \bf{m_{2}  = - \dfrac{1}{\sqrt{3}}}}}

• Standard form of line if it's passing from (p,q) –

  \bf \implies \large{ \boxed{ \bf  y-q=  m_{2}(x - p) }}

• First Required line –

  \bf \implies y-9=   \infty (x - 7)

  \bf \implies y-9=    \dfrac{1}{0}  (x - 7)

  \bf \implies \large{ \boxed { \bf x - 7 = 0}}

• Second Required line –

  \bf \implies \large{ \boxed{ \bf \: y-9= -  \dfrac{1}{ \sqrt{3} } (x - 7)}}

▪︎ Hence Option (a) & (b) are correct.

Answered by suruchisaneha68
0

Answer:

why building collapse due to earthquake

Similar questions
Math, 4 months ago