SOLVE THE QUESTION IN ATTACHMENT.
Answers
- sin x°
- cos y°
- 3tan x° - 2 sin y° + 4 cos y°
Let,
∆ABC be a right triangle.
A other line AD in BC .
Then , we take here two triangle.
- Right ∆ ABC
- Rught ∆ ADC .
Where,
- <ABC = x°
- <ADC = y°
- AB = 17
- AC = 8
- BC = BD + DC = BD + 6
Now, first Calculate BD,
For this take Right ∆ABC,
Using Pythagorous Theorem
So,
==> (17)² = (BD + BC)² + (AC)²
==> (p + 6)² = 17² - 8²
==> (p² + 36 + 12p) = 289 - 64
==> p² + 12p +36 - 225 = 0
==> p² + 12p - 189 = 0
==> p² + 21p - 9p - 189 = 0
==> p(p + 21) - 9(p + 21) = 0
==> (p + 21)(p - 9) = 0
==> ( p + 21) = 0 Or, p - 9 = 0
==> p =-21 , Or p = 9
P = -21 neglect values. , because length is not (- ve ) .
So, take
- p = 9.
So, Value of BC ,
==> BC = BD + DC
==> BC = 9 + 6
==> BC = 15
Now, Calculate AD,
==> AD² = 8² + 6²
==> AD² = 64 + 36
==> AD² = 100
==> AD = 10 .
Now, calculate trigonometry ratio .
Using Formula
★ sin x° = ( perpendicular)/(Hypotenuse)
★ cos y° = (Base)/(Hypotenuse)
★ tan x° = (Perpendicular)/(Base)
So,
==> sin x° = 8/17__________(1)
And,
==> cos y° = 6/10___________(2)
And,
==> tan x° = 8/15 __________(3)
And,
==> sin y° = 8/10________(4)
Now, Calculate value of (3tan x° - 2 sin y° + 4 cos y°)
= 3tan x° - 2 sin y° + 4 cos y°
keep all above Values,
= 3 × 8/15 - 2 × 8/10 + 4 × 6/10
= 8/5 - 8/5 + 12/5
= 12/5
Or,
= 2.4
- Value of sin x° = 8/17
- Value of cos y° = 6/10
- Value of (3tan x° - 2 sin y° + 4 cos y°) = 2.4
_______________________
Note:-
- Diagram Attached .