Math, asked by Anonymous, 3 months ago

\huge{\mathfrak{{☆Question ☆}}}

What is the perfect square form of 16x² - 4x + \sf{\frac{9}{36}}? ​

Answers

Answered by Anonymous
73

Answer :-

\implies\sf 16x^2 - 4x + \frac{9}{36}

\implies\sf (4x)^2 - 4x + \Big(\frac{3}{6}\Big)^2

\implies\sf (4x)^2 - 2 ( 4x ) \Big( \dfrac{3}{6} \Big) + \Big(\dfrac{3}{6}\Big)^2

Using the identity

  • \sf (a-b)^2 = a^2 - 2ab - b^2

According to the expression, we got -

  • \sf a = 4x
  • \sf b = \dfrac{3}{6}

\implies\sf \Big(4x - \dfrac{3}{6}\Big)^2

\boxed{\sf 16x^2 - 4x + \frac{9}{36} = \Big(4x - \dfrac{3}{6}\Big)^2 }

Verification -

\sf \Big(4x - \dfrac{3}{6}\Big)^2

\sf = (4x)^2 + \Big(\dfrac{3}{6}\Big)^2 - 2 \times 4x \times \Big(\dfrac{3}{6}\Big)

\sf = 16x^2 + \frac{9}{36} - 4x

Hence verified.

Answered by IamSameerhii
63

\huge  { \bf{\underline{Answer :-}}}

 \implies\sf 16x^2 - 4x + \frac{9}{36}

 \implies\sf (4x)^2 - 4x + \Big(\frac{3}{6}\Big)^2

 \implies\sf (4x)^2 - 2 ( 4x ) \Big( \dfrac{3}{6} \Big) + \Big(\dfrac{3}{6}\Big)^2

 \large \blue { \boldsymbol{\underline{Using \:   \: the \:  \:  identity  }}}:

 \sf (a-b)^2 = a^2 - 2ab - b^2(a−b)2=a2−2ab−b2

\large \blue { \boldsymbol{\underline{According \:  to \:  the \:  expression,  \:  : -}}}

 \sf a = 4xa=4x

 \sf b = \dfrac{3}{6}b=63

 \implies\sf \Big(4x - \dfrac{3}{6}\Big)^2

 \boxed{\sf 16x^2 - 4x + \frac{9}{36} = \Big(4x - \dfrac{3}{6}\Big)^2 }

 \huge \bf{ \underline{Verification : -}}

 \sf \Big(4x - \dfrac{3}{6}\Big)^2(4x−63)

 \sf = (4x)^2 + \Big(\dfrac{3}{6}\Big)^2 - 2 \times 4x \times \Big(\dfrac{3}{6}\Big)

 \sf = 16x^2 + \frac{9}{36} - 4x

 \bigg \lgroup { \bf {\red {Hence  \:  \: verified.}}}\bigg \rgroup

Hope it helps ♥️♥️♪••

Similar questions