Answers
Answer:
Question :-
ABCD is a quadrilateral. AO and BO are the angle bisectors of angle A and B which meet at O. If angle C = 70°, angle D= 50°, find angle AOB.
▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂
Solution :-
➲ Given Information :-
AO ➢ Angle bisector of ∠A
BO ➢ Angle bisector of ∠B
AO & BO meet at point O
Measure of ∠C ➢ 70°
Measure of ∠D ➢ 50°
➲ To Find :-
Measure of ∠AOB
➲ Concept :-
Quadrilaterals
➲ Formula Used :-
➲ Explanation :-
First of all, we'll assume Measure of ∠A & ∠B as 'x'. Then we'll substitute all the values in the first formula provided above. After some minute calculations, we'll get the value of 'x'. The to find the measure of ∠AOB, well substitute the values and use the second formula mentioned above. After some minute calculations, we'll get the value of our ∠AOB. Now let's proceed towards our calculation.
➲ Calculation :-
Assuming the measure of ∠A & ∠B as 'x'
Using the first formula, We get,
Substituting the values given in the formula mentioned above, We get,
Substituting the values, We get,
Adding up all the terms, We get,
Transposing 120° to Right Hand Side of the equation, We get,
Subtracting the terms in Right Hand Side of the equation, We get,
Now, transposing '2' to the denominator in Right Hand Side of the equation, We get,
Cancelling & Calculating further, We get,
Now, In ∠AOB
We now know, ∠A + ∠B = 120°
:⇒ x + x = 120°
:⇒ 2x = 120°
∴ ∠A = 60° , ∠B = 60°
Now, assuming ∠O as 'x'
Using the second formula, mentioned above, We get,
Substituting the values given in the formula mentioned above, We get,
Substituting the values, We get,
Adding up terms of Left Hand Side of the equation, We get,
Transposing 120° to Right Hand Side of the equation, We get,
Subtracting, We get,
▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂
Final Answer :-
Measure of ∠AOB is 60°
▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂
Note :-
Please scroll from right to left to see the whole solution.
Step-by-step explanation:
Answer:
Question :-
ABCD is a quadrilateral. AO and BO are the angle bisectors of angle A and B which meet at O. If angle C = 70°, angle D= 50°, find angle AOB.
▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂
Solution :-
➲ Given Information :-
AO ➢ Angle bisector of ∠A
BO ➢ Angle bisector of ∠B
AO & BO meet at point O
Measure of ∠C ➢ 70°
Measure of ∠D ➢ 50°
➲ To Find :-
Measure of ∠AOB
➲ Concept :-
Quadrilaterals
➲ Formula Used :-
\boxed{ \boxed{ \bf{ \red{sum \: of \: all \: angles \: of \: a \: quadrilateral} = \blue{360 \degree}}}}
sumofallanglesofaquadrilateral=360°
\boxed{ \boxed{ \bf{ \red{sum \: of \: all \: angles \: of \: a \: triangle} = \blue{180 \degree}}}}
sumofallanglesofatriangle=180°
➲ Explanation :-
First of all, we'll assume Measure of ∠A & ∠B as 'x'. Then we'll substitute all the values in the first formula provided above. After some minute calculations, we'll get the value of 'x'. The to find the measure of ∠AOB, well substitute the values and use the second formula mentioned above. After some minute calculations, we'll get the value of our ∠AOB. Now let's proceed towards our calculation.
➲ Calculation :-
Assuming the measure of ∠A & ∠B as 'x'
Using the first formula, We get,
\boxed{ \boxed{ \bf{ \red{sum \: of \: all \: angles \: of \: a \: quadrilateral} = \blue{360 \degree}}}}
sumofallanglesofaquadrilateral=360°
Substituting the values given in the formula mentioned above, We get,
\rm{:\implies \red{∠A + ∠B + ∠C + ∠D} = \blue{360 \degree}}:⟹∠A+∠B+∠C+∠D=360°
Substituting the values, We get,
\rm:\implies { \red{x + x + 70° + 50°= \blue{360 \degree}}}:⟹x+x+70°+50°=360°
Adding up all the terms, We get,
\rm:\implies { \red{2x + 120°= \blue{360 \degree}}}:⟹2x+120°=360°
Transposing 120° to Right Hand Side of the equation, We get,
\rm:\implies{ \red{ 2x = \blue{360 \degree - 120\degree}}}:⟹2x=360°−120°
Subtracting the terms in Right Hand Side of the equation, We get,
\rm:\implies{ \red{ 2x = \blue{240 \degree}}}:⟹2x=240°
Now, transposing '2' to the denominator in Right Hand Side of the equation, We get,
\rm:\implies{ \red{x }= \blue{ \dfrac{240}{2} \degree}}:⟹x=
2
240
°
Cancelling & Calculating further, We get,
\bf:\implies\boxed{{ \boxed{\red{\rm x }= \blue{120 \degree}}}}:⟹
x=120°
Now, In ∠AOB
We now know, ∠A + ∠B = 120°
:⇒ x + x = 120°
:⇒ 2x = 120°
∴ ∠A = 60° , ∠B = 60°
Now, assuming ∠O as 'x'
Using the second formula, mentioned above, We get,
\boxed{ \boxed{ \bf{ \red{sum \: of \: all \: angles \: of \: a \: triangle} = \blue{180 \degree}}}}
sumofallanglesofatriangle=180°
Substituting the values given in the formula mentioned above, We get,
\rm:\implies \red{∠A + ∠B + ∠O }= \blue{180°}:⟹∠A+∠B+∠O=180°
Substituting the values, We get,
\rm:\implies{\red {60° + 60° + x }=\blue{ 180°}}:⟹60°+60°+x=180°
Adding up terms of Left Hand Side of the equation, We get,
\rm:\implies{\red{120° + x }= \blue{180°}}:⟹120°+x=180°
Transposing 120° to Right Hand Side of the equation, We get,
\rm:\implies{ \red{x} =\blue{ 180° - 120°}}:⟹x=180°−120°
Subtracting, We get,
\rm:\implies{ \red x = \blue{60°}}:⟹x=60°
\therefore\boxed{\boxed{\red{ \bf \: ∠AOB }=\blue{ 60°}}}∴
∠AOB=60°
▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂
Final Answer :-
Measure of ∠AOB is 60°
▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂
Note :-
Please scroll from right to left to see the whole solution.