Physics, asked by Mister360, 1 month ago

\Huge{\mathscr{\fcolorbox {navy}{orange}{\color {darkblue}{Question:-}}}}

Prove that in a parallel connection the combine resistance is the sum of the reciprocals of all resistance.

\boxed {\mathcal{\blue {\dfrac {1}{R}=\dfrac {1}{R_1}+\dfrac{1}{R_2}+\dfrac {1}{R_3}}}}​​

Answers

Answered by telex
236

Question :-

  • Prove that in a parallel connection the combine resistance is the sum of the reciprocals of all resistance.

__________________

Solution :-

To Find :-

  • Proof of :-

\boxed {\bf{\red {\dfrac {1}{R}=\dfrac {1}{R_1}+\dfrac{1}{R_2}+\dfrac {1}{R_3}}}}

Calculation :-

Since, the resistor are connected in parallel therefore the voltage will also be equal and same for all.

But, current will get divided,

⇒ I = I1 + I2 + I3.

Proceeding ahead,

 \implies  (\sf\frac{V}{R}) = (\sf\frac{V}{R^1}) + (\sf\frac{V}{R^2}) + (\sf\frac{V}{R^3})

Using Ohm's Law,

⇒V ∝ I

⇒V = IR

⇒I = \sf\frac{V}{R}

Now we will take 'V' as common,

 \implies  V (\sf\frac{1}{R}) = V [(\sf\frac{1}{R1})+(\sf\frac{1}{R2})+(\sf\frac{1}{R3})]

 \implies \sf\frac{1}{R} = \sf\frac{1}{R1}+\sf\frac{1}{R2}+\sf\frac{1}{R3}

 \implies \therefore\boxed {\bf{\dfrac {1}{R}=\dfrac {1}{R_1}+\dfrac{1}{R_2}+\dfrac {1}{R_3}}}

 \large  \blue \dag \boxed{  \underline{ \underline{\tt \red {hence \: proved}}}}  \blue\dag

____________________

Note :-

Diagram in image attached above.

Attachments:
Answered by vanshgupta12345
4

Answer:

Calculation :-

Since, the resistor are connected in parallel therefore the voltage will also be equal and same for all.

But, current will get divided,

⇒ I = I1 + I2 + I3.

Proceeding ahead,

\implies (\sf\frac{V}{R}⟹(

R

V

) = (\sf\frac{V}{R^1}

R

1

V

) + (\sf\frac{V}{R^2}

R

2

V

) + (\sf\frac{V}{R^3}

R

3

V

)

Using Ohm's Law,

⇒V ∝ I

⇒V = IR

⇒I = \sf\frac{V}{R}

R

V

Now we will take 'V' as common,

\implies V (\sf\frac{1}{R}⟹V(

R

1

) = V [(\sf\frac{1}{R1}

R1

1

)+(\sf\frac{1}{R2}

R2

1

)+(\sf\frac{1}{R3}

R3

1

)]

\implies \sf\frac{1}{R}⟹

R

1

= \sf\frac{1}{R1}

R1

1

+\sf\frac{1}{R2}

R2

1

+\sf\frac{1}{R3}

R3

1

\implies \therefore\boxed {\bf{\dfrac {1}{R}=\dfrac {1}{R_1}+\dfrac{1}{R_2}+\dfrac {1}{

Similar questions