Math, asked by aayyuuss123, 1 month ago

\huge\qquad \mathbb{\fcolorbox{red}{lavenderblush}{✰Question ~:) }}

DON'T SPAM✖❌✖❌


Please find the derivative of \sf{\dfrac{e^{\frac{3}{x}}}{x^2}} . Step to step explanation!!​

Answers

Answered by DILhunterBOYayus
6

Answer:

\boxed{\sf{\dfrac{-e^{\dfrac{3}{x}} (3 + 2x )}{x^{4}}}}

Find the derivative using the quotient rule:

\sf{\dfrac{f(x)}{g(x)} = \dfrac{g(x) × f'(x) - f(x) × g'(x)}{(g(x))^{2}}}

In this quotient

\begin{gathered}f(x) = e^{\frac{3}{x} }\\\\g(x) = x^{2}\end{gathered}

Use the following properties to find the derivative of f(x) and g(x):

\begin{gathered}e^{u} = u' ×e^{u}\\\\x^{n} = nx^{n-1}\end{gathered}

quotient rule:

  • \sf{\dfrac{x^{2} × (e^{\dfrac{3}{x}} × (-3x^{-2})) - e^{\dfrac{3}{x}} × 2x }{(x^{2} )^{2}}}

  • \sf{\dfrac{(e^{{{\dfrac{3}{x}}}} ×(-3)) - e^{\dfrac{3}{x}} × 2x }{(x^{2} )^{2}}}

  • \sf{e^{\dfrac{3}{x}}}
  • \dfrac{e^{\dfrac{3}{x}} (-3 - 2x )}{x^{4}}

  • \dfrac{-e^{\dfrac{3}{x}} (3 + 2x )}{x^{4}}
Similar questions