Find the sum of the series
Answers
Step-by-step explanation:
Let
S = 1+4/7+9/7^2+16/7^3+………………..∞ (1)
S/7 = 1/7+4/7^2+9/7^3+16/7^4+……………. ∞ (2)
(1)-(2)=6S/7 =1+3/7+5/7^2+7/7^3+……………∞ (3)
6S/7 =1+3/7+5/7^2+7/7^3+……………∞ (4)
6S/7^2= 1/7+3/7^2+5/7^3+…………….∞ (5)
(4)-(5)= 36S/49=1+2/7+2/7^2+2/7^3+…………………∞ (6)
Now, 36S/49 = 1+2/7(1+1/7+1/7^2+……………..∞)
= 1+2/7(1/(1–1/7))= 1+2/7*7/6= 4/3
Therefore S = 49/27
Answer:
This is a typical GP series problem.
Let
S = 1+4/7+9/7^2+16/7^3+………………..∞ (1)
S/7 = 1/7+4/7^2+9/7^3+16/7^4+……………. ∞ (2)
(1)-(2)=6S/7 =1+3/7+5/7^2+7/7^3+……………∞ (3)
6S/7 =1+3/7+5/7^2+7/7^3+……………∞ (4)
6S/7^2= 1/7+3/7^2+5/7^3+…………….∞ (5)
(4)-(5)= 36S/49=1+2/7+2/7^2+2/7^3+…………………∞ (6)
Now, 36S/49 = 1+2/7(1+1/7+1/7^2+……………..∞)
= 1+2/7(1/(1–1/7))= 1+2/7*7/6= 4/3
Therefore S = 49/27
Step-by-step explanation: