Math, asked by itzmedipayan2, 1 day ago


 \huge \red{ \boxed{  \green{question}}}

a \frac{ {d}^{4} y}{ {dx}^{4} }  + by \:  =  {ce}^{( \frac{ { - x}^{2} }{2}) } \\

 \rule{500pt}{5pt}


Please don't spam

Really appreciated if solved on paper or by using latex

Thank You!​

Answers

Answered by Squishyoongi
9

Answer:

(xy2−ex31)dx=x2ydy</p><p></p><p></p><p>x \sqrt{2} ydxdy−xy2=−ex31    −(1)</p><p></p><p></p><p>let y2=t</p><p></p><p>∴2ydy=dt</p><p></p><p>

1.

→2dxx2dt−xt=−e−x31</p><p></p><p></p><p>dxdt−x2t=−x22e−x31</p><p></p><p>P=x−2,Q=−x32e−x31</p><p></p><p></p><p>I.f.=e∫p.dx</p><p></p><p>      =e∫x−2dx</p><p></p><p>      =e−2logx</p><p></p><p>         =elogx−2</p><p></p><p>          =x−2</p><p></p><p>

Completer solution

t×x−2=∫x−2×−x22ex3−1dx+c</u></p><p></p><p><u>[tex]t×x−2=∫x−2×−x22ex3−1dx+ct×x−2=−∫x42ex3−1dx+c</u></p><p></p><p><u>[tex]t×x−2=∫x−2×−x22ex3−1dx+ct×x−2=−∫x42ex3−1dx+cLetx3−1=u</u></p><p></p><p><u>[tex]t×x−2=∫x−2×−x22ex3−1dx+ct×x−2=−∫x42ex3−1dx+cLetx3−1=u         →x43dx=du</u></p><p></p><p><u>[tex]t×x−2=∫x−2×−x22ex3−1dx+ct×x−2=−∫x42ex3−1dx+cLetx3−1=u         →x43dx=dut×x−2=−∫32eudu+c</u></p><p></p><p><u>[tex]t×x−2=∫x−2×−x22ex3−1dx+ct×x−2=−∫x42ex3−1dx+cLetx3−1=u         →x43dx=dut×x−2=−∫32eudu+ct×x−2=−32eu+c</u></p><p></p><p><u>[tex]t×x−2=∫x−2×−x22ex3−1dx+ct×x−2=−∫x42ex3−1dx+cLetx3−1=u         →x43dx=dut×x−2=−∫32eudu+ct×x−2=−32eu+c

Substitute the value of t and u

∴y2×x−2=−32ex3−1+c</u></p><p></p><p><u>[tex]∴y2×x−2=−32ex3−1+c2x2y2+31ex3−1=c</u></p><p></p><p><u>[tex]∴y2×x−2=−32ex3−1+c2x2y2+31ex3−1=c

Step-by-step explanation:

HOPE IT HELPS BRO☺

BUT I AM NOT SURE

Similar questions