Math, asked by MysteriousAryan, 1 month ago

\huge\red{\boxed{\sf QuEsTioN}}

Evaluate the derivative of f(x) = sin²x using Leibnitz product rule.​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

The given function is

\red{\rm :\longmapsto\:f(x) =  {sin}^{2}x}

We have to find f'(x) using Leibnitz Rule.

We know,

Leibntiz Rule for differentiation

Let us consider two function 'u' & 'v' then nth derivative of u. v is given as

 \boxed{\begin{gathered}  \sf \dfrac{d^{n}}{dx}u.v = \: ^{n}C_{0} \dfrac{d^{n}u}{dx} (v) + \: ^{n}C_{1} \dfrac{d^{n - 1}u}{dx} \left(\dfrac{dv}{dx} \right) + -  -  + \: ^{n}C_{n}(u) \dfrac{d^{n}v}{dx} \end{gathered}}

According to statement,

We have to find f'(x) for f(x) = sin²x

So,

\red{\rm :\longmapsto\:f(x) =  {sin}^{2}x}

can be rewritten as

\red{\rm :\longmapsto\:f(x) = sinx. \: sinx}

So, On differentiating both sides w. r. t. x, we get

\red{\rm :\longmapsto\:\dfrac{d}{dx}f(x) =\dfrac{d}{dx} sinx. \: sinx}

\rm :\longmapsto\:f'(x) = \:  ^{1}C_{0} \: (sinx)\dfrac{d}{dx}sinx \:  +  \: ^{1}C_{1} \: (sinx) \: \dfrac{d}{dx}sinx

We know,

\boxed{ \rm \:\dfrac{d}{dx}sinx = cosx}

\boxed{ \rm \:^{n}C_{0} = 1}

and

\boxed{ \rm \:^{n}C_{1} = n}

So, using this, we get

\rm :\longmapsto\:f'(x) = 1(sinx)(cosx) + 1(sinx)(cosx)

\rm :\longmapsto\:f'(x) = sinx \: cosx + sinx \: cosx

\bf\implies \:\boxed{ \bf \:f'(x) \:  =  \: 2 \: sinx \: cosx \: }

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}\\ \\ \sf  {sin}^{ - 1}x  & \sf  \dfrac{1}{ \sqrt{1 -  {x}^{2} } }\\ \\ \sf  {cos}^{ - 1}x  & \sf   \dfrac{ - 1}{ \sqrt{1 -  {x}^{2} } } \\ \\ \sf  {tan}^{ - 1}x  & \sf   \dfrac{1}{1 +  {x}^{2} }\\ \\ \sf  {cot}^{ - 1}x & \sf   \dfrac{ - 1}{1 +  {x}^{2} }    \end{array}} \\ \end{gathered}

Answered by sk181231
1

\huge\red{\boxed{\sf AnSwEr}}

✰ Ǫᴜᴇsᴛɪᴏɴ

  • Evaluate the derivative of f(x) = sin²x using Leibnitz product rule.

✰ ᴀɴsᴡᴇʀ

❅ Given info ≈ f(x) = sin2x

♛ Let ➜ y = sin2x

Then according to the question ,

❍ We have to use Leibnitz product rule ,

Then,

 \frac{dy}{dx}  = ( \frac{d}{dx} )sin2x

 \frac{dy}{dx}  = ( \frac{d}{dx} )(sin \: x)(sin \: x)

 \frac{dy}{dx}  = (sin \: x)(sin \: x) + (sin \: x)(sin \: x)

 \frac{dy}{dx}  \:  = cos \: x \: sin \: x + sin \: x \: cos \: x

 \frac{dy}{dx}  = 2sin \: x \: cos \: x

 \frac{dy}{dx}  =  \: sin2x

✧ Therefore the answer is sin2x .

Similar questions