Math, asked by ItzmissCandy, 10 hours ago


\huge\sf\fbox\pink{question}


The circumference of the base of a cylindrical vessel is 132 cm and it's height is 25 cm.How many litres of water can it hold? (1000 cm³ = 1 l )

spammers will be reported ❗​

Answers

Answered by Anonymous
51

Given :

  • The circumference of base of a cylinderical vessel is 132 cm and its height is 25 cm.

 \\ {\underline{\rule{200pt}{3pt}}}

To Find :

  • How many litres of water can it hold ?

 \\ {\underline{\rule{200pt}{3pt}}}

Solution :

{\orange{❒}} Formula Used :

  • Circumference of Circle :

\large{\color{blue}{\bigstar}} \: \: {\underline{\boxed{\red{\sf{ Circumference{\small_{(Circle)}} = 2πr }}}}}

  • Volume of Cylinder :

\large{\color{blue}{\bigstar}} \: \: {\underline{\boxed{\red{\sf{ Volume{\small_{(Cylinder)}} = πr²h }}}}}

Where :

  • ➳ Circumference = 132 cm
  • ➳ π = pi = {\sf{ \dfrac{22}{7}}}
  • ➳ h = Height = 25 m
  • ➳ r = Radius = ?
  • ➳ Volume = ?

 \\ \qquad{\rule{150pt}{1pt}}

{\orange{❒}} Calculating the Radius :

{\longmapsto{\qquad{\sf{ Circumference{\small_{(Base )}} = 2πr }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ \: \: \: 132 = 2 \times \dfrac{22}{7} \times r }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ \: \: \: 132 \times 7 = 2 \times 22 \times r }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ \: \: \: 924 = 44 \times r }}}} \\ \\ \ {\longmapsto{\qquad{\sf{\: \: \:  \cancel\dfrac{924}{44} = r }}}} \\ \\ \ {\qquad{\sf{ Radius \: of \: the \: Base \: = {\pink{\sf{ 21 \: cm }}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

{\orange{❒}} Calculating the Volume :

{\longmapsto{\qquad{\sf{ Volume{\small_{(Cylinderical \: Vessel )}} = πr²h }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Volume{\small_{(Cylinderical \: Vessel )}} = \dfrac{22}{\cancel7} \times \cancel{21} \times 21 \times 25 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Volume{\small_{(Cylinderical \: Vessel )}} = 22 \times 3 \times 21 \times 25 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Volume{\small_{(Cylinderical \: Vessel )}} = 66 \times 525 }}}} \\ \\ \ {\qquad{\sf{ Volume \: of \: the \: Cylinderical \: Vessel \: = {\green{\sf{34650 \: cm² }}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

{\orange{❒}} Calculating Water it can hold :

{\dashrightarrow{\qquad{\sf{ Water{\small_{(Holded)}} = \dfrac{Volume}{1000}}}}} \: \: \: \: \bigg\lgroup{\purple{\sf{ 1000 \: cm³ = 1 \: L }}}\bigg\rgroup \\ \\ \ {\dashrightarrow{\qquad{\sf{ Water{\small_{(Holded)}} = \cancel\dfrac{34560}{1000}}}}} \\ \\ \ {\qquad{\sf{ Water \: it \: can \: Hold \: = {\red{\sf{ 34.65 \: Litres }}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

{\orange{❒}} Therefore :

❝ It can hold 34.65 Litres of water in it. ❞

 \\ {\underline{\color{cyan}{\rule{300pt}{9pt}}}}


Aryan0123: Good
Answered by ItzzTwinklingStar
74

Given:

  • The circumference of the base of a cylindrical vessel is 132 cm.

  • Its height is 25 cm.

To find:

  • How many litres of water can it hold?

Solution :

Radius of the cylindrical vessel:

We know that,

Formula used :

 \\ { \underline{\boxed{\frak{ \pink{Circumference\:of\:base=2\pi\:r}}} }} \\  \\

putting values,

\sf:\implies\:2πr = 132 \\  \\

\sf:\implies\: 2 × \frac{22}{7}   × r = 132 \\  \\

\sf:\implies\: r = 132×  \frac{1}{2}  ×  \frac{7}{22}  \\  \\

\sf:\implies\: r = 21 \\  \\

Radius of the cylindrical vessel is 21 cm.

 \\ \qquad{\rule{150pt}{1pt}}

Volume of cylindrical vessel,

Formula used :

{  \underline{\boxed{\frak{ \red{Volume\:of\: cylinder=\pi\:r^2h}}}}}

putting values,

\sf:\implies\: πr²h\\\\

\sf:\implies\: \frac{22}{7} × 21×21 × 25  \: cm {}^{3} \\\\

\sf:\implies\: 22×3×21×25  \: cm{}^{3} \\\\

\sf:\implies\: 34650  \: cm^{3}\\\\

\sf:\implies\: 34.65  \: L\\\\

Therefore, it can hold 34.65 L.


Aryan0123: Awesome
Similar questions