❐Moderators
❐Brainly Stars
❐Other best users
Determine the range of
(x² + x + 1)/(x² - x + 1)
°°°° Don't Dare for Spam °°°°
Answers
Answer:
Let y =
= x2 + x + 1x2 - x + 1
= x2 + x + 1x2 - x + 1⇒yx2 + yx+y=x2-x+1 ⇒ (x1)x2 + (y + 1)x+ (y − 1) = 0
= x2 + x + 1x2 - x + 1⇒yx2 + yx+y=x2-x+1 ⇒ (x1)x2 + (y + 1)x+ (y − 1) = 0If x € R, then
= x2 + x + 1x2 - x + 1⇒yx2 + yx+y=x2-x+1 ⇒ (x1)x2 + (y + 1)x+ (y − 1) = 0If x € R, theninant >= 0
⇒ (y + 1)2 - 4(y − 1)2 ≥ 0
⇒-3y2 +10y - 320
⇒-3y2 +10y - 320⇒ 3y2 - 10y +3≤0
⇒-3y2 +10y - 320⇒ 3y2 - 10y +3≤0⇒ (3y - 1)(y - 3) ≤ 08
⇒-3y2 +10y - 320⇒ 3y2 - 10y +3≤0⇒ (3y - 1)(y - 3) ≤ 08⇒ 31 ≤ y ≤ 3
⇒-3y2 +10y - 320⇒ 3y2 - 10y +3≤0⇒ (3y - 1)(y - 3) ≤ 08⇒ 31 ≤ y ≤ 3=Range = [31, 3]
Answer:
Let y = (x2 + x + 1)/(x2 - x + 1)
⇒ x2y – xy + y = x2 + x + 1
⇒ x2y – xy + y – x2 – x – 1 = 0
⇒ x2(y – 1) – x(y + 1) + (y – 1) = 0
x is real ⇒ b2 – 4ac ≥ 0 ⇒ (y + 1)2 – 4(y – 1)2 ≥ 0
⇒ (y + 1)2 – (2y – 2)2 ≥ 0
⇒ (y + 1 + 2y – 2) (y + 1 – 2y + 2) ≥ 0
⇒ (3y – 1) (–y + 3) ≥ 0
⇒ –(3y – 1) (y – 3) ≥ 0
a = coeff. of y2 = –3 < 0.,
But The expression ≥ 0 ⇒ y lies between 1/3 and 3
∴ The range of (x2 + x + 1)/(x2 - x + 1) is [1/3, 3]